精英家教网 > 高中数学 > 题目详情
5.若函数f(x)对定义域内的任意x1,x2,当f(x1)=f(x2)时,总有x1=x2,则称函数f(x)为单纯函数,例如函数f(x)=x是单纯函数,但函数f(x)=x2不是单纯函数.若函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\-{x^2}+m,x>0\end{array}\right.$为单纯函数,则实数m的取值范围是m≤0.

分析 求出f(x)在(-∞,0]和(0,+∞)上的值域,令其无交集即可.

解答 解:f(x)在(-∞,0]上单调递增,且f(x)>0,
∴f(x)在(-∞,0]上的值域为(0,1],
f(x)在(0,+∞)上单调递减,
f(x)在(0,+∞)上的值域为(-∞,m),
∵f(x)是单纯函数,
∴(-∞,m)∩(0,1]=∅,
∴m≤0.
故答案为:m≤0.

点评 本题考查了函数值域的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的前n项和为Sn,且a1=1,an+1=$\left\{\begin{array}{l}{{a}_{n}+3,\frac{n}{3}∉{N}^{*}}\\{{a}_{n},\frac{n}{3}∈{N}^{*}}\end{array}\right.$若S3n≤λ•3n-1恒成立,则实数λ的取值范围为[14,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知sinx-cosx=$\frac{1}{5}$,0≤x≤π,则sin(2x+$\frac{π}{4}$)的值为$\frac{17\sqrt{2}}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,}&{x<0}\\{-\frac{1}{x},}&{x>0}\end{array}\right.$的图象上存在不同的两点A、B,使得曲线y=f(x)在这两点处的切线重合,则点A的横坐标的取值范围可能是(  )
A.(-$\frac{1}{2}$,0)B.(-1,-$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某工厂生产某种产品的产量x(吨)与相应的生产成本y(万元)有如下几组样本数据:
x3456
y2.53.13.94.5
据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得到其回归直线的斜率为0.8,则当该产品的生产成本是6.7万元时,其相应的产量约是(  )
A.8B.8.5C.9D.9.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知不等式ax2-3x+6>4的解集为 {x|x<1或x>b}(b>1).
(1)求实数a,b的值;
(2)解不等式ax2-(ac+b)x+bc<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠DAB=∠ABC=90°,AD=2BC,四棱锥P-ABCD的体积为10,点M在PD上.
(Ⅰ)求证:BC∥平面PAD;
(Ⅱ)若AM⊥PD,求证:PD⊥平面ABM;
(Ⅲ)若点M是棱PD的中点,求三棱锥B-ACM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若α是第二象限角,则$\frac{1}{2}$+$\frac{1}{2}$$\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}$的值等于(  )
A.cos2$\frac{α}{2}$B.sin2$\frac{α}{2}$C.cos2αD.sin2α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设定义在R上的函数f(x)=ex-ax(a∈R).
(1)求函数f(x)的单调区间;
(2)若存在x0∈[1,+∞),使得f(x0)<e-a成立,求实数a的取值范围;
(3)定义:如果实数s,t,r满足|s-r|≤|t-r|,那么称s比t更接近r.对于(2)中的a及x≥1,问:$\frac{e}{x}$和ex-1+a哪个更接近lnx?并说明理由.

查看答案和解析>>

同步练习册答案