精英家教网 > 高中数学 > 题目详情
16.已知sinx-cosx=$\frac{1}{5}$,0≤x≤π,则sin(2x+$\frac{π}{4}$)的值为$\frac{17\sqrt{2}}{50}$.

分析 由已知可求sinx>0,利用同角三角函数基本关系式可求sinx,进而可求cosx,利用二倍角公式可求sin2x,cos2x的值,根据两角和的正弦函数公式可求sin(2x+$\frac{π}{4}$)的值.

解答 解:∵sinx-cosx=$\frac{1}{5}$,sin2x+cos2x=1,
∴可得:25sin2x-5sinx-12=0,解得:sinx=$\frac{4}{5}$或-$\frac{3}{5}$,
又∵0≤x≤π,sinx≥0,
∴sinx=$\frac{4}{5}$,
∴cosx=sinx-$\frac{1}{5}$=$\frac{3}{5}$,sin2x=2sinxcosx=$\frac{24}{25}$,cos2x=2cos2x-1=-$\frac{7}{25}$,
∴sin(2x+$\frac{π}{4}$)=sin2xcos$\frac{π}{4}$+cos2xsin$\frac{π}{4}$=$\frac{24}{25}×\frac{\sqrt{2}}{2}$-$\frac{7}{25}×\frac{\sqrt{2}}{2}$=$\frac{17\sqrt{2}}{50}$.
故答案为:$\frac{17\sqrt{2}}{50}$.

点评 本题主要考查了同角三角函数基本关系式,二倍角公式,两角和的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.三位老师和三位学生站成一排,要求任何两位学生都不相邻,则不同的排法总数为(  )
A.720B.144C.36D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,A,B,C的对边分别为a,b,c,已知A=75°,B=45°,c=3$\sqrt{6}$,则b=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在四面体ABCD中,二面角A-BC-D为60°,点P为直线BC上一动点,记直线PA与平面BCD所成的角为θ,则(  )
A.θ的最大值为60°B.θ的最小值为60°C.θ的最大值为30°D.θ的最小值为30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y2=4x上有两点A、B到焦点的距离之和为8,则A、B到y轴的距离之和为(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=2x-6,则f(f(2))=(  )
A.-$\frac{23}{4}$B.$\frac{23}{4}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设A(1,1)、B(7,4),点C满足$\overrightarrow{AC}$=2$\overrightarrow{CB}$,则点C的坐标是(  )
A.(3,2)B.(3,5)C.(5,3)D.(8,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)对定义域内的任意x1,x2,当f(x1)=f(x2)时,总有x1=x2,则称函数f(x)为单纯函数,例如函数f(x)=x是单纯函数,但函数f(x)=x2不是单纯函数.若函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\-{x^2}+m,x>0\end{array}\right.$为单纯函数,则实数m的取值范围是m≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a1<0,S18=S36,若Sn最小,则n的值为(  )
A.18B.27C.36D.54

查看答案和解析>>

同步练习册答案