精英家教网 > 高中数学 > 题目详情
4.在等差数列{an}中,a1<0,S18=S36,若Sn最小,则n的值为(  )
A.18B.27C.36D.54

分析 根据等差数列的性质求出当an<0时,n的取值范围即可得到结论.

解答 解:由S18=S36,得a19+a20+…+a35+a36=0,
即9(a27+a28)=0,即a27+a28=0,
则2a1+53d=0,即d=-$\frac{2}{53}$a1>0,
则an=a1+(n-1)d=a1-$\frac{2}{53}$a1(n-1),
由an=a1-$\frac{2}{53}$a1(n-1)≤0,得1-$\frac{2}{53}$(n-1)≥0,
得2n≤55,得n≤$\frac{55}{2}$=27$\frac{1}{2}$,
即当n≤27时,an<0,
则要使Sn最小,则n=27,
故选:B.

点评 本题主要考查等差数列的性质,结合等差数列的前n项和公式以及性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知sinx-cosx=$\frac{1}{5}$,0≤x≤π,则sin(2x+$\frac{π}{4}$)的值为$\frac{17\sqrt{2}}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠DAB=∠ABC=90°,AD=2BC,四棱锥P-ABCD的体积为10,点M在PD上.
(Ⅰ)求证:BC∥平面PAD;
(Ⅱ)若AM⊥PD,求证:PD⊥平面ABM;
(Ⅲ)若点M是棱PD的中点,求三棱锥B-ACM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若α是第二象限角,则$\frac{1}{2}$+$\frac{1}{2}$$\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}$的值等于(  )
A.cos2$\frac{α}{2}$B.sin2$\frac{α}{2}$C.cos2αD.sin2α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,D,E分别为线段AB,AC上的点,且$AD=\frac{1}{2}AB$,$AE=\frac{2}{3}AC$,若BE⊥CD,则sinA的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}满足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n}{3}(n∈{N^*})$
(1)求an
(2)设${b_n}=\frac{n}{a_n}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}x=5-\frac{{\sqrt{3}}}{2}t\\ y=-\sqrt{3}+\frac{1}{2}t\end{array}\right.$(t为参数),圆C的极坐标方程为$ρ=4cos(θ-\frac{π}{3})$
(I)求直线l和圆C的直角坐标方程;
(Ⅱ)若点P(x,y)在圆C上,求$\sqrt{3}x-y$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设定义在R上的函数f(x)=ex-ax(a∈R).
(1)求函数f(x)的单调区间;
(2)若存在x0∈[1,+∞),使得f(x0)<e-a成立,求实数a的取值范围;
(3)定义:如果实数s,t,r满足|s-r|≤|t-r|,那么称s比t更接近r.对于(2)中的a及x≥1,问:$\frac{e}{x}$和ex-1+a哪个更接近lnx?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于x的不等式|x-1|-|x-3|>a2-3a的解集为非空数集,则实数a的取值范围是(  )
A.1<a<2B.$\frac{{3-\sqrt{17}}}{2}<a<\frac{{3+\sqrt{17}}}{2}$C.a<1或a>2D.a≤1或a≥2

查看答案和解析>>

同步练习册答案