精英家教网 > 高中数学 > 题目详情
17.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠DAB=∠ABC=90°,AD=2BC,四棱锥P-ABCD的体积为10,点M在PD上.
(Ⅰ)求证:BC∥平面PAD;
(Ⅱ)若AM⊥PD,求证:PD⊥平面ABM;
(Ⅲ)若点M是棱PD的中点,求三棱锥B-ACM的体积.

分析 (Ⅰ)推导出AD∥BC,由此能证明BC∥平面PAD.
(Ⅱ)推导出AB⊥AD,从而AB⊥平面PAD,进而AB⊥PD,再由AM⊥PD,能证明PD⊥平面ABM.
解:(Ⅲ)由AD=2BC,得S△ABC=$\frac{1}{3}{S}_{梯形ABCD}$,由点M是棱PD的中点,得点M到平面ABC的距离d是点P到平面ABCD的距离h的一半,由此利用四棱锥P-ABCD的体积为10,能求出三棱锥B-ACM的体积.

解答 证明:(Ⅰ)∵∠DAB=∠ABC=90°,∴AD∥BC,
∵BC?平面PAD,AD?平面PAD,
∴BC∥平面PAD.
(Ⅱ)∵∠DAB=90°,∴AB⊥AD,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴AB⊥平面PAD,∵PD?平面PAD,∴AB⊥PD,
∵AM⊥PD,AB∩AM=A,∴PD⊥平面ABM.
解:(Ⅲ)∵AD=2BC,∴S△ABC=$\frac{1}{3}{S}_{梯形ABCD}$,
∵点M是棱PD的中点,∴点M到平面ABC的距离d是点P到平面ABCD的距离h的一半,
∵四棱锥P-ABCD的体积为10,
∴VP-ABCD=$\frac{1}{3}×h×{S}_{梯形ABCD}$=10,
∴三棱锥B-ACM的体积VB-ACM=$\frac{1}{3}×{S}_{△ABC}×d$
=$\frac{1}{3}×(\frac{1}{3}{S}_{梯形ABCD})×(\frac{1}{2}h)$=$\frac{1}{6}$×($\frac{1}{3}×h×{S}_{梯形ABCD}$)=$\frac{1}{6}×$10=$\frac{5}{3}$.

点评 本题考查线面垂直的证明,考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在△ABC中,A,B,C的对边分别为a,b,c,已知A=75°,B=45°,c=3$\sqrt{6}$,则b=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设A(1,1)、B(7,4),点C满足$\overrightarrow{AC}$=2$\overrightarrow{CB}$,则点C的坐标是(  )
A.(3,2)B.(3,5)C.(5,3)D.(8,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)对定义域内的任意x1,x2,当f(x1)=f(x2)时,总有x1=x2,则称函数f(x)为单纯函数,例如函数f(x)=x是单纯函数,但函数f(x)=x2不是单纯函数.若函数$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\-{x^2}+m,x>0\end{array}\right.$为单纯函数,则实数m的取值范围是m≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等比数列{an}满足an+an+1=9•2n-1,n∈N*
(1)求数列{an}的通项公式;
(2)记bn=(-1)n$\frac{{9•{2^{n-1}}}}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和Tn
(3)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对任意正整数n恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设曲线y=xn+1(n∈N+)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2017x1+log2017x2+…+log2017x2016的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,五边形ABC 中,点M、N、P、Q分别是AB、CD、BC、DE的中点,K和L分别是MN和PQ的中点.求证:$\overrightarrow{KL}$=$\frac{1}{4}$$\overrightarrow{AE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a1<0,S18=S36,若Sn最小,则n的值为(  )
A.18B.27C.36D.54

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知四面体ABCD中,∠BAC=60°,∠BAD=∠CAD=90°,$AB=\sqrt{3}$,$AC=2\sqrt{3}$,其外接球体积为$\frac{32}{3}π$,则该四面体ABCD的棱AD=2.

查看答案和解析>>

同步练习册答案