精英家教网 > 高中数学 > 题目详情
20.设随机变量X~B(2,p),随机变量Y~B(3,p),若P(X≥1)=$\frac{5}{9}$,则D(3Y+1)=6.

分析 由二项分布得P(X≥1)=1-P(X=0)=$\frac{5}{9}$,从而P=$\frac{1}{3}$,进而Y~B(3,$\frac{1}{3}$),由此先求出D(Y),从而能求出D(3Y+1).

解答 解:∵随机变量X~B(2,p),随机变量Y~B(3,p),P(X≥1)=$\frac{5}{9}$,
∴P(X≥1)=1-P(X=0)=1-${C}_{2}^{0}{p}^{0}(1-p)^{2}$=$\frac{5}{9}$,
解得P=$\frac{1}{3}$,
∴Y~B(3,$\frac{1}{3}$),∴D(Y)=3×$\frac{1}{3}×(1-\frac{1}{3})$=$\frac{2}{3}$,
∴D(3Y+1)=9D(Y)=9×$\frac{2}{3}$=6.
故答案为:6.

点评 本题考查方差的求法,考查二项分布等基础知识,考查运算求解能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和为Sn,若Sn=2n+n-1.则a6=33.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)为定义在R上的奇函数,当x>0时,f(x)=4x-2x-f(1),则f(-1)的值为(  )
A.1B.-1C.eD.-e

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在等比数列{an}中,若a1+a2=18,a2+a3=12,则公比q为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,输出的S值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若关于x的不等式|2x-m|-$\frac{1}{{2}^{x}}$<0在区间[0,1]内恒成立,则实数m的范围$\frac{3}{2}<m<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:y=ax2(a>0)的焦点为F,点P(4,$\frac{7}{2}$),且抛物线C恰好经过线段PF的中点.
(I)求a的值;
(Ⅱ)过点P的直线l交抛物线C于A,B两点,设直线FA,FP,FB的斜率分别为k1,k2,k3,则是否有等式k1+k3=$\frac{8}{9}$k2成立?若能成立,求出直线l的方程;若不能成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.△ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB
(1)求角B的大小;
(2)若$b=4,C=\frac{π}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a≥b>0,分别用综合法和分析法证明:3a3+2b3≥3a2b+2ab2

查看答案和解析>>

同步练习册答案