9£®ÏÃÃÅÈÕ±¨Ñ¶£¬2016Äê5ÔÂ1ÈÕÉÏÎ磬ÏÃÃź£Ñó×ÛºÏÐÐÕþÖ´·¨Ö§¶ÓÔÚ¹«ÎñÂëÍ·Æô¶¯ÁË2016ÄêÐÝÓæ¼à¹ÜÖ´·¨µÄÊ×ÈÕÐж¯£¬Õâ±êÖ¾×ÅÏÃÃź£ÓòÕýʽ²½ÈëΪÆÚ4¸ö°ëÔµÄÐÝÓæÆÚ£®Ä³Ð¡Î¢ÆóÒµ¾ö¶¨¶Ú»ýһЩ±ùÏʲúÆ·£¬ÏúÊÛËù¶Ú»ýÓãÆ·µÄ¾»ÀûÈóyÍòÔªÓëͶÈëxÍòÔªÖ®¼ä½üËÆÂú×㺯Êý¹ØÏµ£º
f£¨x£©=$\left\{\begin{array}{l}{2{x}^{2}-£¨2ln2£©•x£¬0£¼x£¼2}\\{alnx-\frac{1}{4}{x}^{2}+\frac{9}{2}x£¬2¡Üx¡Ü15}\end{array}\right.$
ÈôͶÈë2ÍòÔª£¬¿ÉµÃµ½¾»ÀûÈóΪ5.2ÍòÔª£®
£¨1£©ÊÔÇó¸ÃС΢ÆóҵͶÈë¶àÉÙÍòԪʱ£¬»ñµÃµÄ¾»ÀûÈó×î´ó£»
£¨2£©ÇëÅжϸÃС΢ÆóÒµÊÇ·ñ»á¿÷±¾£¬Èô¿÷±¾£¬Çó³öͶÈë×ʽðµÄ·¶Î§£»Èô²»¿÷±¾£¬Çë˵Ã÷ÀíÓÉ£¨²Î¿¼Êý¾Ý£ºln2=0.7£¬ln15=2.7£©

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃf£¨2£©=5.2£¬½âµÃa=-4£¬ÌÖÂÛ2¡Üx¡Ü15ʱ£¬ÇóµÃµ¼ÊýºÍµ¥µ÷Çø¼ä¡¢¼«ÖµºÍ×îÖµ£»ÓÉ0£¼x£¼2ʱ£¬f£¨x£©µÄµ¥µ÷ÐԿɵÃf£¨x£©µÄ×î´óÖµ£»
£¨2£©ÌÖÂÛ0£¼x£¼2ʱ£¬f£¨x£©£¼0µÄxµÄ·¶Î§£¬ÓÉf£¨x£©ÔÚ[2£¬15]µÄ¶ËµãµÄº¯ÊýÖµ£¬¿ÉµÃf£¨x£©£¾0£¬¼´¿ÉÅÐ¶ÏÆóÒµ¿÷±¾µÄxµÄ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£¬µ±x=2ʱ£¬f£¨2£©=5.2£¬
¼´ÓÐaln2-$\frac{1}{4}$¡Á22+$\frac{9}{2}$¡Á2=5.2£¬½âµÃa=-4£®
Ôòf£¨x£©=$\left\{\begin{array}{l}{2{x}^{2}-£¨2ln2£©x£¬0£¼x£¼2}\\{-4lnx-\frac{1}{4}{x}^{2}+\frac{9}{2}x£¬2¡Üx¡Ü15}\end{array}\right.$£®
µ±2¡Üx¡Ü15ʱ£¬f£¨x£©=-4lnx-$\frac{1}{4}$x2+$\frac{9}{2}$x£¬
f¡ä£¨x£©=-$\frac{4}{x}$-$\frac{1}{2}$x+$\frac{9}{2}$=-$\frac{£¨x-1£©£¨x-8£©}{2x}$£¬
µ±2£¼x£¼8ʱ£¬f¡ä£¨x£©£¾0£¬f£¨x£©µÝÔö£»
µ±8£¼x£¼15ʱ£¬f¡ä£¨x£©£¼0£¬f£¨x£©µÝ¼õ£®
µ±2¡Üx¡Ü15ʱ£¬f£¨x£©max=f£¨8£©=-4ln8-16+36=11.6£®
µ±0£¼x£¼2ʱ£¬f£¨x£©£¼2¡Á4-£¨2ln2£©¡Á2=5.2£®
¹Ê¸ÃС΢ÆóҵͶÈë8ÍòԪʱ£¬»ñµÃµÄ¾»ÀûÈó×î´ó£»
£¨2£©µ±0£¼x£¼2ʱ£¬2x2-£¨2ln2£©x£¼0£¬
½âµÃ0£¼x£¼ln2£¬¸ÃÆóÒµ¿÷±¾£»
µ±2¡Üx¡Ü15ʱ£¬f£¨2£©=5.2£¬f£¨15£©=-4ln15-$\frac{1}{4}$¡Á152+$\frac{9}{2}$¡Á15=0.45£¾0£¬
Ôòf£¨x£©min=f£¨15£©=0.45£¾0£¬
×ÛÉϿɵã¬0£¼x£¼ln2£¬¼´0£¼x£¼0.7ʱ£¬¸ÃÆóÒµ¿÷±¾£®

µãÆÀ ±¾Ì⿼²éµ¼ÊýÔÚʵ¼ÊÎÊÌâÖеÄÔËÓãºÇó×îÖµ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÕýÈ·Çóµ¼ÊǽâÌâµÄ¹Ø¼ü£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬ABÊǰëÔ²OµÄÖ±¾¶£¬PÔÚABµÄÑÓ³¤ÏßÉÏ£¬PDÓë°ëÔ²OÏàÇÐÓÚµãC£¬AD¡ÍPD£¬ÈôPC=2£¬PB=1£¬ÔòCD=1.2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª¾ØÕóM=$[\begin{array}{l}{2}&{0}\\{0}&{1}\end{array}]$£¬ÏòÁ¿$\overrightarrow{¦Â}$=$[\begin{array}{l}{1}\\{7}\end{array}]$£¬ÊÔÇóM50$\overrightarrow{¦Â}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÔÚÀⳤΪ2µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬AB£¬D1CµÄÖеã·Ö±ðÊÇM£¬N
£¨1£©ÇóÖ¤£ºMN¡ÍCD£»
£¨2£©ÇóÒìÃæÖ±ÏßBD1ÓëMNËù³É½ÇµÄÓàÏÒÖµ£»
£¨3£©ÇóÈýÀâ×¶D1-MNBµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÖ±Ïßx+y+1=0ÓëÔ²C£ºx2+y2+x-2ay+a=0½»ÓÚA£¬BÁ½µã£®
£¨1£©Èôa=3£¬ÇóABµÄ³¤£»
£¨2£©ÊÇ·ñ´æÔÚʵÊýaʹµÃÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã£¬Èô´æÔÚ£¬Çó³öʵÊýaµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èô¶ÔÓÚÈÎÒâµÄʵÊýa¡Ù$\frac{1}{2}$£¬Ô²CÓëÖ±ÏßlʼÖÕÏàÇУ¬Çó³öÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®É輯ºÏAÂú×㣺Èôa¡ÊA£¬Ôò$\frac{1}{1-a}$¡ÊA£¬ÇÒ1∉A£®
£¨1£©Èô2¡ÊA£¬ÇëÇó³öAÖÐÒ»¶¨º¬ÓÐµÄÆäËûÔªËØ£»
£¨2£©ÇóÖ¤£ºÈôa¡ÊA£¬Ôò1-$\frac{1}{a}$¡ÊA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¼¯ºÏA={x|x=2k£¬k¡ÊZ}£¬B={x|x=2k+1£¬k¡ÊZ}£¬C={x|x=4k+1£¬k¡ÊZ}£¬D={x|x=a+b£¬a¡ÊA£¬b¡ÊB}£»ÔòÏÂÁйØÏµÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®D⊆AB£®D=BC£®D⊆CD£®D=C

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬Ö±ËÄÀâÖôABCD-A1B1C1D1ÖУ¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬AB¡ÎCD£¬AD¡ÍCD£¬2AB=CD£¬²àÃæAA1D1DºÍ²àÃæCC1D1DÊÇÕý·½ÐΣ¬MÊDzàÃæCC1D1DµÄÖÐÐÄ£®
£¨¢ñ£©Ö¤Ã÷£ºAM¡ÎÆ½ÃæBB1C1C£»
£¨¢ò£©ÇóÆ½ÃæMAB1ÓëÆ½ÃæA1B1C1D1Ëù³ÉÈñ¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ËÄÀâ×¶P-ABCDÖУ¬µ×ÃæÊDZ߳¤Îª6µÄÁâÐΣ¬ÇÒ¡ÏBAD=60¡ã£¬PD¡ÍÆ½ÃæABCD£¬PD=8£®
£¨1£©ÇóÖ¤£ºPB¡ÍAC£»
£¨2£©EΪPBÖе㣬ÇóAEÓëÆ½ÃæPBDËù³ÉµÄ½Ç£»
£¨3£©ÇóµãDµ½Æ½ÃæPACµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸