精英家教网 > 高中数学 > 题目详情
5.四棱锥P-ABCD中,底面是边长为6的菱形,且∠BAD=60°,PD⊥平面ABCD,PD=8.
(1)求证:PB⊥AC;
(2)E为PB中点,求AE与平面PBD所成的角;
(3)求点D到平面PAC的距离.

分析 (1)连接AC,BD,则AC⊥BD.证明AC⊥平面PBD,即可证明PB⊥AC;
(2)设AC,BD交于O,由(1)可知AO⊥平面PBD,∠AEO是AE与平面PBD所成的角;
(3)利用等体积求点D到平面PAC的距离.

解答 (1)证明:连接AC,BD,则AC⊥BD.
∵PD⊥平面ABCD,AC?平面ABCD,
∴PD⊥AC,
∵BD∩PD=D,
∴AC⊥平面PBD,
∵PB?平面PBD,
∴PB⊥AC;
(2)解:设AC,BD交于O,由(1)可知AO⊥平面PBD,
∴∠AEO是AE与平面PBD所成的角,
∵底面是边长为6的菱形,且∠BAD=60°,
∴AO=3$\sqrt{3}$,
∵PD=8,E为PB中点,
∴OE=4,
∴tan∠AEO=$\frac{3\sqrt{3}}{4}$,
∴AE与平面PBD所成的角为arctan$\frac{3\sqrt{3}}{4}$;
(3)解:连接PO,由(2)可知,PO=$\sqrt{64+9}$=$\sqrt{73}$,AC=6$\sqrt{3}$,
∴S△PAC=$\frac{1}{2}×6\sqrt{3}×\sqrt{73}$=3$\sqrt{219}$,
设点D到平面PAC的距离为h,则由等体积可得$\frac{1}{3}×3\sqrt{219}h$=$\frac{1}{3}×\frac{1}{2}×6×6×\frac{\sqrt{3}}{2}×8$,
∴h=$\frac{24\sqrt{73}}{73}$.

点评 本题考查线面垂直的判定与性质,考查点到平面距离的计算,考查体积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.厦门日报讯,2016年5月1日上午,厦门海洋综合行政执法支队在公务码头启动了2016年休渔监管执法的首日行动,这标志着厦门海域正式步入为期4个半月的休渔期.某小微企业决定囤积一些冰鲜产品,销售所囤积鱼品的净利润y万元与投入x万元之间近似满足函数关系:
f(x)=$\left\{\begin{array}{l}{2{x}^{2}-(2ln2)•x,0<x<2}\\{alnx-\frac{1}{4}{x}^{2}+\frac{9}{2}x,2≤x≤15}\end{array}\right.$
若投入2万元,可得到净利润为5.2万元.
(1)试求该小微企业投入多少万元时,获得的净利润最大;
(2)请判断该小微企业是否会亏本,若亏本,求出投入资金的范围;若不亏本,请说明理由(参考数据:ln2=0.7,ln15=2.7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在直角梯形PBCD中,∠D=∠C=90°,BC=CD=2,PD=4,A为PD的中点,将△PAB沿AB折起,使平面PAB⊥平面ABCD.
(1)证明:平面PBD⊥平面PAC;
(2)若点E在DC的延长线上且满足$\overrightarrow{DE}$=λ$\overrightarrow{DC}$(λ>0),当λ为何值时,二面角P-BE-A的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知棱长3的正方体ABCD-A1B1C1D1中,长为2的线段MN的一端点M在DD1上运动,另一个端点N在底面ABCD内运动,线段EF在平面BC1A1内,则MN中点P到EF距离的最小值为(  )
A.$\sqrt{3}$-1B.$\frac{3\sqrt{2}}{2}$-1C.$\frac{3\sqrt{3}}{2}$-1D.2$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点(1,1,-1)到平面x-y+z+4=0的距离是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.写出下列图形的极坐标方程,且画出图象(已知点为极坐标):
(1)过点(10,$\frac{π}{4}$)且平行于极轴的直线;
(2)过点(10,$\frac{π}{4}$)且垂直于极轴的直线;
(3)过点(1,0)和极轴夹角$\frac{π}{6}$的直线;
(4)圆心在(1,π)、半径为1的圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化下列极坐标方程为直角坐标方程.
(1)ρ=cosθ+2sinθ;
(2)ρ=1+sinθ;
(3)ρ3sinθcos2θ=ρ2cos2θ-ρsinθ+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知在直角坐标系xOy中,直线C1的参数方程为$\left\{\begin{array}{l}{x=1+tcos\frac{π}{6}}\\{y=-\sqrt{3}+tsin\frac{π}{6}}\end{array}\right.$(t为参数);以原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=4cosθ
(I)写出C1和C2的直角坐标方程;
(Ⅱ)若点P在曲线C2上,且点P到直线C1的距离为1,求点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\sqrt{x+1}$+$\sqrt{1-x}$的最大值是2.

查看答案和解析>>

同步练习册答案