精英家教网 > 高中数学 > 题目详情
13.已知棱长3的正方体ABCD-A1B1C1D1中,长为2的线段MN的一端点M在DD1上运动,另一个端点N在底面ABCD内运动,线段EF在平面BC1A1内,则MN中点P到EF距离的最小值为(  )
A.$\sqrt{3}$-1B.$\frac{3\sqrt{2}}{2}$-1C.$\frac{3\sqrt{3}}{2}$-1D.2$\sqrt{3}$-1

分析 根据题意,连接N点与D点,得到一个直角三角形△NMD,P为斜边MN的中点,所以|PD|的长度不变,进而得到点P的轨迹是球面的一部分,再求出D到平面BC1A1的距离,即可求出MN中点P到EF距离的最小值.

解答 解:如图可得,端点N在正方形ABCD内运动,连接N点与D点,
由ND,DM,MN构成一个直角三角形,
设P为MN的中点,根据直角三角形斜边上的中线长度为斜边的一半可得
DP=$\frac{1}{2}$MN=1,
不论△MDN如何变化,P点到D点的距离始终等于1.
∴MN的中点P的轨迹是一个以D为中心,半径为1的球的$\frac{1}{8}$的球面,
棱长3的正方体ABCD-A1B1C1D1中,对角线为3$\sqrt{3}$,
所以D到平面BC1A1的距离为2$\sqrt{3}$,
所以MN中点P到EF距离的最小值为2$\sqrt{3}$-1,
故选:D.

点评 本题主要考查点的轨迹方程的判断,考查MN中点P到EF距离的最小值,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在棱长为2的正方体ABCD-A1B1C1D1中,AB,D1C的中点分别是M,N
(1)求证:MN⊥CD;
(2)求异面直线BD1与MN所成角的余弦值;
(3)求三棱锥D1-MNB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,直四棱拄ABCD-A1B1C1D1中,底面ABCD是直角梯形,AB∥CD,AD⊥CD,2AB=CD,侧面AA1D1D和侧面CC1D1D是正方形,M是侧面CC1D1D的中心.
(Ⅰ)证明:AM∥平面BB1C1C;
(Ⅱ)求平面MAB1与平面A1B1C1D1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,ABCD是直角梯形,∠ABC=90°,AD∥BC,SA⊥平面ABCD,SA=AB=BC=2,AD=1,求面SCD与面SBA所成二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,是一曲边三角形地块,其中曲边AB是以A为顶点,AC为对称轴的抛物线的一部分,点B到AC边的距离为2Km,另外两边AC、BC的长度分别为8Km,2$\sqrt{5}$Km.现欲在此地块内建一形状为直角梯形DECF的科技园区.求科技园区面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,∠ACB=90°,
(1)求证:BC⊥平面PAC;
(2)若二面角D-PC-A的余弦值为$\frac{\sqrt{5}}{5}$,求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.四棱锥P-ABCD中,底面是边长为6的菱形,且∠BAD=60°,PD⊥平面ABCD,PD=8.
(1)求证:PB⊥AC;
(2)E为PB中点,求AE与平面PBD所成的角;
(3)求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求以C(4,$\frac{π}{2}$)为圆心,半径等于4的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义运算“*”如下:a*b=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,关于函数f(x)=sinx*cosx有下列四个结论:
①函数f(x)值域为[-1,1];
②当且仅当x=2kπ+$\frac{π}{2}$(k∈Z)时,函数f(x)取得最大值;
③f(x)是以π为最小正周期的周期函数;
④当且仅当2kπ+π<x<2kπ+$\frac{3π}{2}$(k∈Z)时,函数f(x)<0.
其中结论正确的是④.

查看答案和解析>>

同步练习册答案