精英家教网 > 高中数学 > 题目详情
3.定义运算“*”如下:a*b=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,关于函数f(x)=sinx*cosx有下列四个结论:
①函数f(x)值域为[-1,1];
②当且仅当x=2kπ+$\frac{π}{2}$(k∈Z)时,函数f(x)取得最大值;
③f(x)是以π为最小正周期的周期函数;
④当且仅当2kπ+π<x<2kπ+$\frac{3π}{2}$(k∈Z)时,函数f(x)<0.
其中结论正确的是④.

分析 根据题意,画出函数f(x)=sinx*cosx=$\left\{\begin{array}{l}{sinx,sinx≥cosx}\\{cosx,sinx<cosx}\end{array}\right.$ 在一个周期上的图象,数形结合可得结论.

解答 解:由于函数f(x)=sinx*cosx
=$\left\{\begin{array}{l}{sinx,sinx≥cosx}\\{cosx,sinx<cosx}\end{array}\right.$,
表示在sinx 和cosx中取较大的一个,
f(x)在一个周期上的图象如图所示,
由图象可得,它的值域为[-$\frac{\sqrt{2}}{2}$,1],
它的最小正周期为2π,故①③不正确.
当x=2kπ,或 x=2kπ+$\frac{π}{2}$(k∈Z)时,
函数f(x)取得最大值,故②不正确.
当且仅当2kπ+π<x<2kπ+$\frac{3π}{2}$(k∈Z)时,
cosx 和sinx都小于零,故函数f(x)<0,故④正确,
故答案为:④.

点评 本题主要考查新定义,正弦函数、余弦函数的图象特征,体现了数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知棱长3的正方体ABCD-A1B1C1D1中,长为2的线段MN的一端点M在DD1上运动,另一个端点N在底面ABCD内运动,线段EF在平面BC1A1内,则MN中点P到EF距离的最小值为(  )
A.$\sqrt{3}$-1B.$\frac{3\sqrt{2}}{2}$-1C.$\frac{3\sqrt{3}}{2}$-1D.2$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知在直角坐标系xOy中,直线C1的参数方程为$\left\{\begin{array}{l}{x=1+tcos\frac{π}{6}}\\{y=-\sqrt{3}+tsin\frac{π}{6}}\end{array}\right.$(t为参数);以原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=4cosθ
(I)写出C1和C2的直角坐标方程;
(Ⅱ)若点P在曲线C2上,且点P到直线C1的距离为1,求点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$loga(ax)•loga(a2x)(x∈[2,8],a>0,且a≠1)的最大值是1,最小值是-$\frac{1}{8}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,设P为圆O外的点,过点P作圆O的切线PA,切点为A,过点P作圆O的割线PBC,与圆交于B,C两点,AH⊥OP,垂足为H.
(1)求证:△PHB~△PCO;
(2)已知圆O的半径为1,PA=$\sqrt{3}$,PB=$\frac{\sqrt{6}}{2}$,求四边形BCOH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.平面直角坐标系中,点P、Q是方程$\sqrt{{x^2}+2\sqrt{7}x+{y^2}+7}+\sqrt{{x^2}-2\sqrt{7}x+{y^2}+7}$=8表示的曲线C上不同两点,且以PQ为直径的圆过坐标原点O,则O到直线PQ的距离为(  )
A.2B.$\frac{6}{5}$C.3D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\sqrt{x+1}$+$\sqrt{1-x}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.比较下列各题中两个数学式值的大小
(1)1.7a+1,1.7a;(2)0.9a-1,0.9a
(3)log0.9(a2+1),log0.9a2;(4)log1.2a2,log1.2(a2-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\frac{sin(2π-x)•cos(\frac{3}{2}π+x)}{cos(3π-x)•sin(\frac{11}{2}π-x)}$,则f(-$\frac{21π}{4}$)=-1.

查看答案和解析>>

同步练习册答案