精英家教网 > 高中数学 > 题目详情
18.如图所示,设P为圆O外的点,过点P作圆O的切线PA,切点为A,过点P作圆O的割线PBC,与圆交于B,C两点,AH⊥OP,垂足为H.
(1)求证:△PHB~△PCO;
(2)已知圆O的半径为1,PA=$\sqrt{3}$,PB=$\frac{\sqrt{6}}{2}$,求四边形BCOH的面积.

分析 (1)由射影定理知:PA2=PH•PO,根据切线长定理知:PA2=PB•PC,即可证明:△PHB~△PCO;
(2)求出S△OCP=$\frac{1}{2}×1×\sqrt{6}×\frac{\sqrt{10}}{4}$=$\frac{\sqrt{15}}{4}$.由△PHB∽△PCO,相似比为$\frac{PB}{PO}$=$\frac{\sqrt{6}}{4}$,面积比为($\frac{\sqrt{6}}{4}$)2=$\frac{3}{8}$,从而求出四边形BCOH的面积.

解答 证明:(1)在直角△POA中,由射影定理知:PA2=PH•PO,
又根据切线长定理知:PA2=PB•PC,
从而PH•PO=PB•PC,即$\frac{PH}{PC}=\frac{PB}{PO}$,
∵∠BPH=∠OPC,
∴△PHB~△PCO;
解:(2)由勾股定理PO=2,由切线长定理PA2=PB•PC,可得PC=$\sqrt{6}$,
在△POC中,cosC=$\frac{1+6-4}{2×1×\sqrt{6}}$=$\frac{\sqrt{6}}{4}$,
∴sinC=$\frac{\sqrt{10}}{4}$
所以S△OCP=$\frac{1}{2}×1×\sqrt{6}×\frac{\sqrt{10}}{4}$=$\frac{\sqrt{15}}{4}$.
由△PHB∽△PCO,相似比为$\frac{PB}{PO}$=$\frac{\sqrt{6}}{4}$,面积比为($\frac{\sqrt{6}}{4}$)2=$\frac{3}{8}$
从而四边形BCOH的面积S=$\frac{5}{8}$S△OCP=$\frac{5}{32}\sqrt{15}$.

点评 本题考查三角形相似的判定与性质,考查切线长定理、射影定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,是一曲边三角形地块,其中曲边AB是以A为顶点,AC为对称轴的抛物线的一部分,点B到AC边的距离为2Km,另外两边AC、BC的长度分别为8Km,2$\sqrt{5}$Km.现欲在此地块内建一形状为直角梯形DECF的科技园区.求科技园区面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,已知AB是⊙O的直径,AB=2,AC和AD是⊙O的两条弦,AC=$\sqrt{2}$,AD=$\sqrt{3}$,则∠CAD的弧度数为75°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=loga(a-ax)(0<a<1).
(1)求函数的定义域和值域;
(2)判断函数的单调性;
(3)若f-1(x2-2)>f(x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.己知函数f(x)=log2(4x+1)-x
(1)判断f(x)的奇偶性并加以证明;
(2)判断f(x)的单调性(不需要证明);
(3)解关于m的不等式f(m)-f(2m+1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义运算“*”如下:a*b=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,关于函数f(x)=sinx*cosx有下列四个结论:
①函数f(x)值域为[-1,1];
②当且仅当x=2kπ+$\frac{π}{2}$(k∈Z)时,函数f(x)取得最大值;
③f(x)是以π为最小正周期的周期函数;
④当且仅当2kπ+π<x<2kπ+$\frac{3π}{2}$(k∈Z)时,函数f(x)<0.
其中结论正确的是④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点H在圆D:(x-2)2+(y+3)2=32上运动,点P坐标为(-6,3),线段PH中点为M,
(1)求点M的轨迹方程,
(2)平面内是否存在定点A(a,b),使M到O(0,0)、A的距离之比为常数λ(λ≠1),若存在,求出A的坐标及λ的值;若不存在,说明理由;
(3)若直线y=kx与M的轨迹交于B、C两点,N(0,m)使NB⊥NC,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式:y=$\frac{a}{x-3}$+10(x-6)2,其中3<x<6,a为常数,已知销售的价格为5元/千克时,每日可以售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过A(m,1)与B(-1,m)的直线与过点P(1,2),Q(-5,0)的直线垂直,则m=-2.

查看答案和解析>>

同步练习册答案