精英家教网 > 高中数学 > 题目详情
13.己知函数f(x)=log2(4x+1)-x
(1)判断f(x)的奇偶性并加以证明;
(2)判断f(x)的单调性(不需要证明);
(3)解关于m的不等式f(m)-f(2m+1)<0.

分析 (1)函数f(x)=log2(4x+1)-x是偶函数.利用对数性质能推导出f(-x)=f(x).
(2)根据偶函数在对称区间上单调性相反,可得f(x)的单调性;
(3)若f(m)-f(2m+1)<0,则f(m)<f(2m+1),结合函数的单调性,可得答案.

解答 解:(1)函数f(x)=log2(4x+1)-x是偶函数,理由如下:
函数f(x)=log2(4x+1)-x的定义域R关于原点对称,
且f(-x)=log2(4-x+1)+x=log2($\frac{{4}^{x}+1}{{4}^{x}}$)+x=log2(4x+1)-2x+x=log2(4x+1)-x=f(x),
故f(x)为偶函数;
(2)偶函数在对称区间上单调性相反,
故函数f(x)在(0,+∞)为增函数,在(-∞,0)上为减函数;
(3)若f(m)-f(2m+1)<0,则f(m)<f(2m+1),
则|m|<|2m+1|,即m2<(2m+1)2
解得:m∈(-∞,-1)∪(-$\frac{1}{3}$,+∞)

点评 本题考查的知识是函数的奇偶性,函数的单调性,利用单调性解不等式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-mx.
(Ⅰ)若f(x)的最大值为-1,求实数m的值;
(Ⅱ)若f(x)的两个零点为x1,x2,且ex1≤x2,求y=(x1-x2)f′(x1+x2)的最小值.(其中e为自然对数的底数,f′(x)是f(x)的导函数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求点P(3,-1,2)到直线$\left\{\begin{array}{l}{x+y-z+1=0}\\{2x-y+z-4=0}\end{array}\right.$的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x0是函数y=sinx-$\frac{1}{x}$+1的零点,则-x0满足的方程是(  )
A.sinx+x=1B.sinx-x=1C.x•sinx+x=1D.x•sinx-x=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求a的取值范围,使得函数y=log2[x2+(a-1)x+$\frac{9}{4}$]的定义域为全体实数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,设P为圆O外的点,过点P作圆O的切线PA,切点为A,过点P作圆O的割线PBC,与圆交于B,C两点,AH⊥OP,垂足为H.
(1)求证:△PHB~△PCO;
(2)已知圆O的半径为1,PA=$\sqrt{3}$,PB=$\frac{\sqrt{6}}{2}$,求四边形BCOH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的定义域:
(1)y=lg(sinx);
(2)y=$\sqrt{1-2si{n}^{2}x}$;
(3)y=lg(2sinx-1)+$\sqrt{64-{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线l的倾斜角为$\frac{π}{6}$,且过点P(1,2),若直线l与圆C:x2+y2=10交于A,B两点,则|PA|•|PB|的值为(  )
A.$2\sqrt{3}$B.5C.$2\sqrt{3}+2$D.$2\sqrt{2}+3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+bx+c有两个零点0和-2,且g(x)和f(x)的图象关于原点对称.
(1)求函数f(x)和g(x)的解析式;
(2)解不等式f(x)≥g(x)+6x-4;
(3)如果f(x)定义在[m,m+1],f(x)的最大值为g(m),求g(m)的解析式.

查看答案和解析>>

同步练习册答案