精英家教网 > 高中数学 > 题目详情
1.已知x0是函数y=sinx-$\frac{1}{x}$+1的零点,则-x0满足的方程是(  )
A.sinx+x=1B.sinx-x=1C.x•sinx+x=1D.x•sinx-x=1

分析 根据零点定义得出x0为f(x)=0的解,将f(x)=0变形即可得出答案.

解答 解:由题意得f(x0)=sinx0-$\frac{1}{{x}_{0}}$+1=0,
∴sinx0=$\frac{1}{{x}_{0}}-1$.
∴x0•sinx0+x0=1,即-x0•sin(-x0)-(-x0)=1.
∴-x0是方程x•sinx-x=1的解.
故选:D.

点评 本题考查了函数零点的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,侧面PAD为等边三角形且平面PAD⊥底面ABCD,E、F分别为CD、PB的中点.
(1)求证:EF⊥PA;
(2)求二面角P-BE-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,平行四边形ABCD中,AB⊥BD,DE⊥BC,∠A=60°,将△ABD,△DCE分别沿BD,DE折起,使AB∥CE.
(1)求证:AB⊥BE;
(2)若四棱锥D-ABEC的体积为$\frac{3\sqrt{3}}{2}$,求CE长并求点C到面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,已知AB是⊙O的直径,AB=2,AC和AD是⊙O的两条弦,AC=$\sqrt{2}$,AD=$\sqrt{3}$,则∠CAD的弧度数为75°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.极坐标方程ρ=2cosθ(ρ≥0,0≤θ≤$\frac{π}{2}$)所表示的曲线是(  )
A.直线B.一条线段C.D.半圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=loga(a-ax)(0<a<1).
(1)求函数的定义域和值域;
(2)判断函数的单调性;
(3)若f-1(x2-2)>f(x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.己知函数f(x)=log2(4x+1)-x
(1)判断f(x)的奇偶性并加以证明;
(2)判断f(x)的单调性(不需要证明);
(3)解关于m的不等式f(m)-f(2m+1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点H在圆D:(x-2)2+(y+3)2=32上运动,点P坐标为(-6,3),线段PH中点为M,
(1)求点M的轨迹方程,
(2)平面内是否存在定点A(a,b),使M到O(0,0)、A的距离之比为常数λ(λ≠1),若存在,求出A的坐标及λ的值;若不存在,说明理由;
(3)若直线y=kx与M的轨迹交于B、C两点,N(0,m)使NB⊥NC,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆方程为x2+y2+4mx-12y+4m-2=0与直线x-y+1=0.
(1)用m去表示圆的半径和面积;
(2)求圆面积最小时,圆的一般式方程;
(3)当圆面积最小时,判断圆与直线的位置关系.

查看答案和解析>>

同步练习册答案