精英家教网 > 高中数学 > 题目详情
16.极坐标方程ρ=2cosθ(ρ≥0,0≤θ≤$\frac{π}{2}$)所表示的曲线是(  )
A.直线B.一条线段C.D.半圆

分析 利用互化公式即可化为直角坐标方程,即可得出.

解答 解:极坐标方程ρ=2cosθ(ρ≥0,化为ρ2=2ρcosθ,即x2+y2=2x,配方为(x-1)2+y2=1,
∵0≤θ≤$\frac{π}{2}$,
∴表示的曲线是半圆.
故选:D.

点评 本题考查了极坐标化为直角坐标方程,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在三棱锥S-ABC中,△ABC为正三角形,且A在面SBC上的射影H是△SBC的垂心,又二面角H-AB-C为30°,则$\frac{SA}{AB}$=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若向量$\overrightarrow{n}$=(1,1,0)垂直于经过点A(2,0,2)的动直线l,设d为点P(-4,0,2)到直线l的距离,则dmin:dmax等于(  )
A.1:2B.1:$\sqrt{2}$C.1:$\sqrt{3}$D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求点P(3,-1,2)到直线$\left\{\begin{array}{l}{x+y-z+1=0}\\{2x-y+z-4=0}\end{array}\right.$的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,点P为曲线C:x2+y2-2x-2y=0上一点,点M为线段OP中点,以坐标原点为极点,x轴非负半轴为极轴,建立极坐标系.
(Ⅰ)求点M轨迹E的极坐标方程;
(Ⅱ)直线l1:y=$\sqrt{3}$x,l2:y=$\frac{\sqrt{3}}{3}$x与轨迹E的交点分别为A,B,求△AOB的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x0是函数y=sinx-$\frac{1}{x}$+1的零点,则-x0满足的方程是(  )
A.sinx+x=1B.sinx-x=1C.x•sinx+x=1D.x•sinx-x=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求a的取值范围,使得函数y=log2[x2+(a-1)x+$\frac{9}{4}$]的定义域为全体实数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的定义域:
(1)y=lg(sinx);
(2)y=$\sqrt{1-2si{n}^{2}x}$;
(3)y=lg(2sinx-1)+$\sqrt{64-{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当0<x<$\frac{π}{4}$时,函数y=$\frac{co{s}^{2}x}{cosxsinx-si{n}^{2}x}$的最小值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

同步练习册答案