分析 (1)利用配方法,可得结论;
(2)利用配方法求最值,即可求圆面积最小时,圆的一般式方程;
(3)当圆面积最小时,求出圆心到直线的距离与半径比较,即可判断圆与直线的位置关系.
解答 解:(1)x2+y2+4mx-12y+4m-2=0可化为(x+2m)2+(y-6)2=4m2-4m+38,
∴r=$\sqrt{4{m}^{2}-4m+38}$,S=(4m2-4m+38)π;
(2)4m2-4m+38=(2m-1)2+37,
∴m=$\frac{1}{2}$时,圆面积最小,圆的一般式方程为x2+y2+2x-12y=0;
(3)当圆面积最小时,圆心坐标为(-1,6),半径为$\sqrt{37}$,
圆心到直线的距离d=$\frac{|-1-6+1|}{\sqrt{2}}$=3$\sqrt{2}$<$\sqrt{37}$,
∴圆与直线相交.
点评 本题考查圆的方程,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | sinx+x=1 | B. | sinx-x=1 | C. | x•sinx+x=1 | D. | x•sinx-x=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{3}$ | B. | 5 | C. | $2\sqrt{3}+2$ | D. | $2\sqrt{2}+3$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | 2 | C. | 3 | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 锐角三角形 | C. | 等边三角形 | D. | 直角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com