精英家教网 > 高中数学 > 题目详情
16.把下列参数方程化为普通方程
(1)$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数);
(2)$\left\{\begin{array}{l}{x=sinθ}\\{y=co{s}^{2}θ}\end{array}\right.$(θ为参数,θ∈[0,2π])

分析 (1)消去参数t即可得到普通方程.
(2)消去参数θ,即可得到普通方程.

解答 解:(1)$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数);
可得:$\frac{x-1}{y-5}=\frac{\frac{1}{2}t}{\frac{\sqrt{3}}{2}t}$=$\frac{1}{\sqrt{3}}$,
即$\sqrt{3}x-y-\sqrt{3}+5=0$.
参数方程化为普通方程为:$\sqrt{3}x-y-\sqrt{3}+5=0$.
(2)$\left\{\begin{array}{l}{x=sinθ}\\{y=co{s}^{2}θ}\end{array}\right.$(θ为参数,θ∈[0,2π])
可得:x∈[-1,1].
x2+y=sin2θ+cos2θ=1.
参数方程化为普通方程为:x2=1-y.

点评 本题考查参数方程与普通方程的互化,注意x的范围是易错点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=loga(a-ax)(0<a<1).
(1)求函数的定义域和值域;
(2)判断函数的单调性;
(3)若f-1(x2-2)>f(x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式:y=$\frac{a}{x-3}$+10(x-6)2,其中3<x<6,a为常数,已知销售的价格为5元/千克时,每日可以售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.f是集合M={a,b,c}到集合N={-1,0,1}的映射,且f(a)+f(b)=f(c),则不同的映射共有7个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆方程为x2+y2+4mx-12y+4m-2=0与直线x-y+1=0.
(1)用m去表示圆的半径和面积;
(2)求圆面积最小时,圆的一般式方程;
(3)当圆面积最小时,判断圆与直线的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C:x2+y2+2x+4y+m=0.
(1)当m为何值时,曲线C表示圆?
(2)若直线l:y=x-m与圆C相切,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过A(m,1)与B(-1,m)的直线与过点P(1,2),Q(-5,0)的直线垂直,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=4t\\ y=3t-1\end{array}\right.(t为参数)$,当t=0时,曲线C1上对应的点为P.以原点为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρ=\frac{{2\sqrt{3}}}{{\sqrt{3+{{sin}^2}θ}}}$.     
(1)求曲线C1的极坐标方程与C2的直角坐标方程.
(2)设曲线C1与C2的公共点为A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\frac{xlnx}{x-1}$,g(x)=-$\frac{1}{2}a({x^2}-x-2)$,其中a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意x>1,都有f(x)>g(x-1)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案