精英家教网 > 高中数学 > 题目详情
8.过A(m,1)与B(-1,m)的直线与过点P(1,2),Q(-5,0)的直线垂直,则m=-2.

分析 直接利用两条直线的斜率乘积为-1,求解即可.

解答 解:过点A(m,1)与B(-1,m)的直线的斜率$\frac{m-1}{-1-m}$,过点P(1,2),Q(-5,0)的直线的斜率为:$\frac{2-0}{1+5}$=$\frac{1}{3}$.
因为两条直线垂直,所以$\frac{m-1}{-1-m}$×$\frac{1}{3}$=-1,解得m=-2.
故答案为:-2.

点评 本题考查直线的斜率的求法,直线垂直条件的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图所示,设P为圆O外的点,过点P作圆O的切线PA,切点为A,过点P作圆O的割线PBC,与圆交于B,C两点,AH⊥OP,垂足为H.
(1)求证:△PHB~△PCO;
(2)已知圆O的半径为1,PA=$\sqrt{3}$,PB=$\frac{\sqrt{6}}{2}$,求四边形BCOH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是 (  )
A.$2\sqrt{2}$B.2C.3D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.把下列参数方程化为普通方程
(1)$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数);
(2)$\left\{\begin{array}{l}{x=sinθ}\\{y=co{s}^{2}θ}\end{array}\right.$(θ为参数,θ∈[0,2π])

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+bx+c有两个零点0和-2,且g(x)和f(x)的图象关于原点对称.
(1)求函数f(x)和g(x)的解析式;
(2)解不等式f(x)≥g(x)+6x-4;
(3)如果f(x)定义在[m,m+1],f(x)的最大值为g(m),求g(m)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\frac{sin(2π-x)•cos(\frac{3}{2}π+x)}{cos(3π-x)•sin(\frac{11}{2}π-x)}$,则f(-$\frac{21π}{4}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.a,b,c表示三角形ABC的三边,$|\begin{array}{l}{a}&{b}&{c}\\{c}&{a}&{b}\\{b}&{c}&{a}\end{array}|$=0,则三角形ABC一定不是(  )
A.等腰三角形B.锐角三角形C.等边三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某商场销售一种商品,已知该商品每件成本为6元,若每件售价为x元(x>6),则年销售量W(万件)与每件售价x(元)之间满足关系式:W=kx2+21x+18,且当每件售价为10元时,年销售量为28万件.
(Ⅰ)试确定k的值,并求该商场的年利润f(x)关于售价x的函数关系式;
(Ⅱ)试确定售价x的值,使年利润f(x)最大,并求出最大年利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.以椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的中心O为圆心,且以其短轴长为直径的圆可称为该椭圆的“伴随圆”,记为C1.已知椭圆C的右焦点为($\frac{{\sqrt{3}}}{2}$,0),且过点($\frac{1}{2}$,$\frac{{\sqrt{3}}}{4}$).
(I)求椭圆C及其“伴随圆”C1的方程;
(Ⅱ)过点M(t,0)作C1的切线l交椭圆C于A,B两点,求△AOB(O为坐标原点)的面积的最大值.

查看答案和解析>>

同步练习册答案