精英家教网 > 高中数学 > 题目详情
4.f是集合M={a,b,c}到集合N={-1,0,1}的映射,且f(a)+f(b)=f(c),则不同的映射共有7个.

分析 首先求满足f(a)+f(b)=f(c)的映射f,可分为三种情况,当f(a)=f(b)=f(c)=0时,只有一个映射;当f(c)为0,而另两个f(a)、f(b)分别为1,-1时,有A22=2个映射.当f(c)为-1或1时,而另两个f(a)、f(b)分别为1(或-1),0时,有2×2=4个映射.分别求出3种情况的个数相加即可得到答案.

解答 解:因为:f(a)∈N,f(b)∈N,f(c)∈N,且f(a)+f(b)=f(c),
所以分为3种情况:0+0=0或者 0+1=1或者 0+(-1)=-1或者-1+1=0.
当f(a)=f(b)=f(c)=0时,只有一个映射;
当f(c)为0,而另两个f(a)、f(b)分别为1,-1时,有A22=2个映射.
当f(c)为-1或1时,而另两个f(a)、f(b)分别为1(或-1),0时,有2×2=4个映射.
因此所求的映射的个数为1+2+4=7.
故答案为:7.

点评 本题主要考查了映射的概念和分类讨论的思想.这类题目在高考时多以选择题填空题的形式出现,较简单属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知在直角坐标系xOy中,直线C1的参数方程为$\left\{\begin{array}{l}{x=1+tcos\frac{π}{6}}\\{y=-\sqrt{3}+tsin\frac{π}{6}}\end{array}\right.$(t为参数);以原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=4cosθ
(I)写出C1和C2的直角坐标方程;
(Ⅱ)若点P在曲线C2上,且点P到直线C1的距离为1,求点P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\sqrt{x+1}$+$\sqrt{1-x}$的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.比较下列各题中两个数学式值的大小
(1)1.7a+1,1.7a;(2)0.9a-1,0.9a
(3)log0.9(a2+1),log0.9a2;(4)log1.2a2,log1.2(a2-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是 (  )
A.$2\sqrt{2}$B.2C.3D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=lg(x2+2x+a2)的值域为R,则实数a的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.把下列参数方程化为普通方程
(1)$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数);
(2)$\left\{\begin{array}{l}{x=sinθ}\\{y=co{s}^{2}θ}\end{array}\right.$(θ为参数,θ∈[0,2π])

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\frac{sin(2π-x)•cos(\frac{3}{2}π+x)}{cos(3π-x)•sin(\frac{11}{2}π-x)}$,则f(-$\frac{21π}{4}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=ax+$\frac{a-1}{x}$-lnx.
(Ⅰ)若a=3,求f(x)的最小值;
(Ⅱ)若当x≥1时,f(x)≥2a-1,求a的取值范围.

查看答案和解析>>

同步练习册答案