分析 (1)把已知方程配方,由5-m>0求得m的取值范围;
(2)利用圆心到直线的距离等于圆的半径列式求得m值.
解答 解:(1)由C:x2+y2+2x+4y+m=0,
得(x+1)2+(y+2)2=5-m,
由5-m>0,得m<5.
∴当m<5时,曲线C表示圆;
(2)圆C的圆心坐标为(-1,-2),半径为$\sqrt{5-m}$.
∵直线l:y=x-m与圆C相切,
∴$\frac{|-1×1+(-1)×(-2)-m|}{\sqrt{2}}=\sqrt{5-m}$,
解得:m=±3,满足m<5.
∴m=±3.
点评 本题考查圆的一般方程,考查了直线与圆位置关系的应用,训练了点到直线的距离公式的应用,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com