精英家教网 > 高中数学 > 题目详情
20.点(1,1,-1)到平面x-y+z+4=0的距离是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

分析 根据空间点到平面的距离公式,可得点(1,1,-1)到平面x-y+z+4=0的距离.

解答 解:根据空间点到平面的距离公式,可得d=$\frac{|1-1-1+4|}{\sqrt{1+1+1}}$=$\sqrt{3}$,
故选:D.

点评 本题考查空间点到平面的距离公式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知直线x+y+1=0与圆C:x2+y2+x-2ay+a=0交于A,B两点.
(1)若a=3,求AB的长;
(2)是否存在实数a使得以AB为直径的圆过原点,若存在,求出实数a的值;若不存在,请说明理由;
(3)若对于任意的实数a≠$\frac{1}{2}$,圆C与直线l始终相切,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,侧面PAD为等边三角形且平面PAD⊥底面ABCD,E、F分别为CD、PB的中点.
(1)求证:EF⊥PA;
(2)求二面角P-BE-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,是一曲边三角形地块,其中曲边AB是以A为顶点,AC为对称轴的抛物线的一部分,点B到AC边的距离为2Km,另外两边AC、BC的长度分别为8Km,2$\sqrt{5}$Km.现欲在此地块内建一形状为直角梯形DECF的科技园区.求科技园区面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2,点E是SD的中点,O是AC与BD的交点.
(1)求证:OE∥平面SBC;
(2)求点E到平面SBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.四棱锥P-ABCD中,底面是边长为6的菱形,且∠BAD=60°,PD⊥平面ABCD,PD=8.
(1)求证:PB⊥AC;
(2)E为PB中点,求AE与平面PBD所成的角;
(3)求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,平行四边形ABCD中,AB⊥BD,DE⊥BC,∠A=60°,将△ABD,△DCE分别沿BD,DE折起,使AB∥CE.
(1)求证:AB⊥BE;
(2)若四棱锥D-ABEC的体积为$\frac{3\sqrt{3}}{2}$,求CE长并求点C到面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,已知AB是⊙O的直径,AB=2,AC和AD是⊙O的两条弦,AC=$\sqrt{2}$,AD=$\sqrt{3}$,则∠CAD的弧度数为75°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点H在圆D:(x-2)2+(y+3)2=32上运动,点P坐标为(-6,3),线段PH中点为M,
(1)求点M的轨迹方程,
(2)平面内是否存在定点A(a,b),使M到O(0,0)、A的距离之比为常数λ(λ≠1),若存在,求出A的坐标及λ的值;若不存在,说明理由;
(3)若直线y=kx与M的轨迹交于B、C两点,N(0,m)使NB⊥NC,求m的范围.

查看答案和解析>>

同步练习册答案