精英家教网 > 高中数学 > 题目详情
15.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2,点E是SD的中点,O是AC与BD的交点.
(1)求证:OE∥平面SBC;
(2)求点E到平面SBC的距离.

分析 (1)由线面平行的判定定理即可得到结论.
(2)过D做DF⊥SC,垂足为F,证明DF⊥平面SBC,求出DF,利用点E是SD的中点,求点E到平面SBC的距离.

解答 (1)证明:连接OE,则O是BD的中点,
∵E是SD的中点,
∴OE是△BDS的中位线,
∴OE∥SB,
∵OE?平面SBC,SB?平面SBC,
∴OE∥平面SBC;
(2)解:过D做DF⊥SC,垂足为F,
∵SD⊥平面ABCD,BC?平面ABCD,
∴SD⊥BC,
∵BC⊥CD,SD∩CD=D,
∴BC⊥平面SCD,
∴BC⊥DF,
∵SC∩BC=C,
∴DF⊥平面SBC,
∵SD=AD=2,
∴DF=$\sqrt{2}$,
∵点E是SD的中点,
∴点E到平面SBC的距离为$\frac{\sqrt{2}}{2}$.

点评 本题主要考查线面平行的判断以及点E到平面SBC的距离,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知M=$(\begin{array}{l}{2}&{0}\\{0}&{2}\end{array})$,a=$(\begin{array}{l}{3}\\{1}\end{array})$试计算M10a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在三棱锥S-ABC中,△ABC为正三角形,且A在面SBC上的射影H是△SBC的垂心,又二面角H-AB-C为30°,则$\frac{SA}{AB}$=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-mx.
(Ⅰ)若f(x)的最大值为-1,求实数m的值;
(Ⅱ)若f(x)的两个零点为x1,x2,且ex1≤x2,求y=(x1-x2)f′(x1+x2)的最小值.(其中e为自然对数的底数,f′(x)是f(x)的导函数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程为$\left\{\begin{array}{l}x=-4t+a\\ y=3t-1\end{array}\right.$(t为参数),在直角坐标系xOy中,以O点为极点,x轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M的方程为ρ2-6ρsinθ=-8.
(Ⅰ)求圆M的直角坐标方程;
(Ⅱ)若直线l截圆M所得弦长为$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点(1,1,-1)到平面x-y+z+4=0的距离是(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若向量$\overrightarrow{n}$=(1,1,0)垂直于经过点A(2,0,2)的动直线l,设d为点P(-4,0,2)到直线l的距离,则dmin:dmax等于(  )
A.1:2B.1:$\sqrt{2}$C.1:$\sqrt{3}$D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求点P(3,-1,2)到直线$\left\{\begin{array}{l}{x+y-z+1=0}\\{2x-y+z-4=0}\end{array}\right.$的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的定义域:
(1)y=lg(sinx);
(2)y=$\sqrt{1-2si{n}^{2}x}$;
(3)y=lg(2sinx-1)+$\sqrt{64-{x}^{2}}$.

查看答案和解析>>

同步练习册答案