精英家教网 > 高中数学 > 题目详情
13.命题p:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题q:函数y=(2a2-a)x为增函数.若p∨q为真,p∧q为假,求a的取值范围.

分析 求出命题p,q为真命题的等价条件,结合复合命题之间的关系进行求解即可.

解答 解:p为真时,△=(a-1)2-4a2<0,即a>$\frac{1}{3}$或a<-1.
q为真时,2a2-a>1,即a>1或a<-$\frac{1}{2}$.
若p∨q为真,p∧q为假,
则p、q中有且只有一个是真命题,有两种情况:
p真q假时,$\frac{1}{3}$<a≤1,
p假q真时,-1≤a<-$\frac{1}{2}$,
∴p、q中有且只有一个真命题时,a的取值范围为{a|$\frac{1}{3}$<a≤1或-1≤a<-$\frac{1}{2}$}.

点评 本题主要考查复合命题之间的应用,求出命题的等价关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.先阅读下面文字:
“求$\sqrt{1+\sqrt{1+\sqrt{1+…}}}$的值时,采用了如下的方式:令$\sqrt{1+\sqrt{1+\sqrt{1+…}}}$=x,则有x=$\sqrt{1+x}$,两边平方,得x2=1+x,解得x=$\frac{{1+\sqrt{5}}}{2}$(负值舍去)”.用类比的方法可以求得:当0<q<1时,1+q+q2+q3+…的值为$\frac{1}{1-q}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正方体ABCD-A1B1C1D1中,直线A1C与BD所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|x-a|+4x,其中a>0.
(1)当a=2时,求不等式f(x)≥2x+1的解集;
(2)若x∈(-2,+∞)时,恒有f(2x)>7x+a2-3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l经过(2,-3)和(-10,6)两点,则点(-1,1)到直线l的距离为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{6}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若双曲线mx2+y2=1的离心率为$\sqrt{2}$,则m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.复数z=$\frac{-3+i}{2+i}$的共轭复数是(  )
A.2+iB.2 iC.1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题中错误的是(  )
A.夹在两个平行平面间的平行线段相等
B.过直线l外一点M有且仅有一个平面α与直线l垂直
C.垂直于同一条直线的两个平面平行
D.空间中如果两个角的两边分别对应平行,那么这两个角相等

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在棱长都相等的四面体ABCD中,E、F分别是CD、BC的中点,则异面直线AE、DF所成角的余弦值是$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案