精英家教网 > 高中数学 > 题目详情

已知F1(-1,0)、F2(1,0)是椭圆的两焦点,过F1的直线L交椭圆于M、N,若△MF2N的周长为8,则椭圆方程为

A.    B.    C.    D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆以坐标原点为中心,坐标轴为对称轴,且椭圆以抛物线y2=16x的焦点为其一个焦点,以双曲线
x2
16
-
y2
9
=1
的焦点为顶点.
(1)求椭圆的标准方程;
(2)已知点A(-1,0),B(1,0),且C,D分别为椭圆的上顶点和右顶点,点P是线段CD上的动点,求
AP
BP
的取值范围.
(3)试问在圆x2+y2=a2上,是否存在一点M,使△F1MF2的面积S=b2(其中a为椭圆的半长轴长,b为椭圆的半短轴长,F1,F2为椭圆的两个焦点),若存在,求tan∠F1MF2的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
9
+
y2
b2
=1
(0<b<3)与双曲线x2-
y2
3
=1有相同的焦点F1,F2,P是两曲线位于第一象限的一个交点,则cos∠F1PF2=
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
8
+
y2
b2
=1
(0<b<2
2
)的左、右焦点分别为F1和F2,以F1、F2为直径的圆经过点M(0,b).
(1)求椭圆的方程;
(2)设直线l与椭圆相交于A,B两点,且
MA
MB
=0.求证:直线l在y轴上的截距为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)已知椭圆
x2
a2
+
y2
b2
=1
的两个焦点为F1(-c,0)、F2(c,0),c2是a2与b2的等差中项,其中a、b、c都是正数,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求椭圆的方程;
(2)点P是椭圆上一动点,定点A1(0,2),求△F1PA1面积的最大值;
(3)已知定点E(-1,0),直线y=kx+t与椭圆交于C、D相异两点.证明:对任意的t>0,都存在实数k,使得以线段CD为直径的圆过E点.

查看答案和解析>>

同步练习册答案