精英家教网 > 高中数学 > 题目详情
11.利用五点作图法作下列函数在[0,2π]上的图象.
(1)y=sinx-1;
(2)y=2-cosx.

分析 根据“五点法”即可画出函数在长度为一个周期的闭区间上的简图.

解答 解:(1)列表:

x0$\frac{π}{2}$π$\frac{3π}{2}$
sinx010-10
y=sinx-1-10-1-2-1
在坐标系中描点,连线,可得y=sinx-1的图象如下:

(2)列表:
x0$\frac{π}{2}$π$\frac{3π}{2}$
cosx10-101
y=2-cosx12321
在坐标系中描点,连线,可得y=2-cosx的图象如下:

点评 本题主要考查三角函数的图象和性质,要求熟练掌握五点法作图以及函数图象之间的变化关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,边a、b、c分别是角A、B、C的对边,且满足2sinB=sinA+sinC,设B的最大值为B0
(Ⅰ)求B0的值;
(Ⅱ)当B=B0,a=1,c=2,D为AC的中点时,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,已知a=2,b=2$\sqrt{2}$,C=15°,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.利用导数的定义,求下列函数的导数.
(1)f(x)=2x+3;
(2)f(x)=x-2
(3)f(x)=x${\;}^{\frac{2}{3}}$
(4)f(x)=e2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.y=sinx在第三象限内是增函数B.函数y=sinx(x∈R)的值域是(-1,1)
C.y=cosx在x=2kπ(k∈Z)时取值最大D.y=tanx在整个定义域内都是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sinx的图象向右平移m个单位后得到函数g(x)的图象,h(x)=cos(x+$\frac{π}{3}$),g(x)与h(x)图象的零点重合,则m不可能的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{7π}{6}$D.-$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设正数x,y满足-1<x-y<2,则z=2x-2y的取值范围为(  )
A.(-∞,4)B.(0,4)C.($\frac{1}{4}$,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y+2≤0\\ x≥1\\ x+y-7≤0\end{array}\right.$,则$\frac{x+y}{y}$的取值范围是(  )
A.$(-∞,\frac{7}{6}]$B.$[\frac{14}{9},+∞)$C.$[\frac{14}{9},7]$D.$[\frac{7}{6},\frac{14}{9}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点A(2,0),椭圆E:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,F是椭圆E的上焦点,直线AF的斜率为$-\frac{{\sqrt{3}}}{2}$,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于点P,Q两点,当△OPQ的面积最大时,求l的方程.

查看答案和解析>>

同步练习册答案