精英家教网 > 高中数学 > 题目详情
1.在△ABC中,边a、b、c分别是角A、B、C的对边,且满足2sinB=sinA+sinC,设B的最大值为B0
(Ⅰ)求B0的值;
(Ⅱ)当B=B0,a=1,c=2,D为AC的中点时,求BD的长.

分析 (Ⅰ)由已知结合正弦定理把角的关系转化为边的关系,再由余弦定理求得B0的值;
(Ⅱ)由已知结合余弦定理求得△ABC为直角三角形,再由勾股定理得答案.

解答 解:(Ⅰ)由题设及正弦定理知,2b=a+c,即$b=\frac{a+c}{2}$.
由余弦定理知,$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{{a^2}+{c^2}-{{(\frac{a+c}{2})}^2}}}{2ac}=\frac{{3({a^2}+{c^2})-2ac}}{8ac}≥\frac{3(2ac)-2ac}{8ac}=\frac{1}{2}$,
∵y=cosx在(0,π)上单调递减,∴B的最大值${B_0}=\frac{π}{3}$;
(Ⅱ)∵$B={B_0}=\frac{π}{3},a=1,c=2$,
∴b2=a2+c2-2accosB=3,
得c2=a2+b2,∴$C=\frac{π}{2}$,
∴$BD=\frac{1}{2}AC=\frac{1}{2}\sqrt{A{B^2}-B{C^2}}=\frac{{\sqrt{3}}}{2}$,
∴$BD=\sqrt{C{D^2}+B{C^2}}=\frac{{\sqrt{7}}}{2}$.

点评 本题考查三角形的解法,考查了正弦定理和余弦定理在解三角形中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在锐角△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow m=({2sin({A+C}),\sqrt{3}})$,向量$\overrightarrow n=({cos2B,1-2{{cos}^2}\frac{B}{2}})$,且$\overrightarrow m∥\overrightarrow n$.
(Ⅰ)求角B的大小;
(Ⅱ)若sinAsinC=sin2B,求a-c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知sinx+2cosx=$\frac{\sqrt{10}}{2}$.
(1)求tan2x的值;
(2)求cos4x-2sinxcosx-sin4x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a,b,c分别为△ABC的三个内角A,B,C的对边,$\overrightarrow m=(sinA,-1),\overrightarrow n=(\sqrt{3},cosA)$,且$\overrightarrow m⊥\overrightarrow n$.
(Ⅰ)求角A的大小;
(Ⅱ)若$a=2,b=2\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC内,若$bsinA=\sqrt{3}acosB$,b=3,sinC=2sinA,则c的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$2\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,若sin(2π+A)=$\sqrt{2}$sin(π-B),$\sqrt{3}$cosA=-$\sqrt{2}$cos(π-B),求△ABC的三个内角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的导数:
(1)y=arcsin$\sqrt{x}$;
(2)y=arccos2x;
(3)y=arctan$\frac{1}{x}$;
(4)y=arccot(3x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x2+bx-3,对于给定的实数b,f(x)在[b2,b]上有最大值M(b)和最小值m(b),记g(b)=M(b)-m(b).
(1)求g(b);
(2)如果对任意的x∈[b2,b],都存在符合题意b,使得-b2f(x)=|g(b)|成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.利用五点作图法作下列函数在[0,2π]上的图象.
(1)y=sinx-1;
(2)y=2-cosx.

查看答案和解析>>

同步练习册答案