分析 (I)由$\overrightarrow{m}∥\overrightarrow{n}$,可得2sin(A+C)$(1-2co{s}^{2}\frac{B}{2})$-$\sqrt{3}$cos2B=0,解得tan2B=$-\sqrt{3}$,可得B.
(II)sinAsinC=sin2B,由正弦定理可得:ac=b2,再利用余弦定理即可得出.
解答 解:(I)∵$\overrightarrow{m}∥\overrightarrow{n}$,∴2sin(A+C)$(1-2co{s}^{2}\frac{B}{2})$-$\sqrt{3}$cos2B=0,
∴-2sinBcosB=$\sqrt{3}$cos2B,即sin2B=-$\sqrt{3}$cos2B,解得tan2B=$-\sqrt{3}$,
∵$B∈(0,\frac{π}{2})$,∴2B∈(0,π),∴$2B=\frac{2π}{3}$,解得B=$\frac{π}{3}$.
(II)∵sinAsinC=sin2B,由正弦定理可得:ac=b2,
由余弦定理可得:b2=a2+c2-2accosB,
∴ac=a2+c2-2accos$\frac{π}{3}$,化为(a-c)2=0,解得a-c=0.
点评 本题考查了正弦定理余弦定理的应用、数量积运算性质、和差公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{2π}{3}$,0) | B. | (-$\frac{π}{3}$,0) | C. | ($\frac{2π}{3}$,0) | D. | ($\frac{5π}{3}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{15}}}{3}$ | B. | $\frac{{\sqrt{15}}}{5}$ | C. | $\frac{{\sqrt{5}}}{3}$ | D. | $\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 3 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com