精英家教网 > 高中数学 > 题目详情
1.如图,四棱锥P-ABCD中,底面ABCD是正方形,PA是四棱锥P-ABCD的高,PA=AB=2,点M,N,E分别是PD,AD,CD的中点.
(1)求证:平面MNE∥平面ACP;
(2)求四面体AMBC的体积.

分析 (1)由点M,N,E分别是PD,AD,CD的中点,得MN∥PA,NE∥AC,由此能证明平面MNE∥平面ACP.
(2)由已知得MN⊥平面ABC,且MN=$\frac{1}{2}PA=1$,由此能求出四面体AMBC的体积.

解答 证明:(1)∵点M,N,E分别是PD,AD,CD的中点,
∴MN∥PA,NE∥AC,
PA∩AC=A,MN∩NE=N,
PA,AC?平面PAC,MN,NE?平面MNE,
∴平面MNE∥平面ACP.
解:(2)∵四棱锥P-ABCD中,底面ABCD是正方形,PA是四棱锥P-ABCD的高,
PA=AB=2,点M,N,E分别是PD,AD,CD的中点.
∴MN⊥平面ABC,且MN=$\frac{1}{2}PA=1$,
${S}_{△ABC}=\frac{1}{2}×2×2$=2,
∴四面体AMBC的体积V=$\frac{1}{3}×{S}_{△ABC}×MN$=$\frac{1}{3}×2×1$=$\frac{2}{3}$.

点评 本题考查面面平行的证明,考查四面体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知P(x0,y0)(x0≠±a)是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,M,N分别是椭圆E的左、右顶点,直线PM、PN的斜率之积为-$\frac{1}{4}$.
(1)求椭圆E的离心率;
(2)过椭圆E的左焦点且斜率为1的直线交椭圆E于A,B两点,O为坐标原点,点C为椭圆E上一点,且满足$\overrightarrow{OC}$=$λ\overrightarrow{OA}$$+\overrightarrow{OB}$(λ≠0),求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.填空题
(1)sin240°=$-\frac{\sqrt{3}}{2}$,cos120°=$-\frac{1}{2}$,tan240°=$\sqrt{3}$.
(2)sin225°=$\frac{\sqrt{2}}{2}$,cos135°=$-\frac{\sqrt{2}}{2}$,tan(-330°)=$-\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将2红2白共4个球随机排成一排,则同色球均相邻的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为(  )
A.6B.$\frac{20}{3}$C.7D.$\frac{22}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等比数列{an}中,an>0,a1=256,S3=448,Tn为数列{an}的前n项乘积,则Tn当取得最大值时,n=8或9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.从个位数与十位数之和为偶数的两位数中任取一个,其中个位数为2或3的概率为(  )
A.$\frac{5}{9}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=sin($ωx+\frac{π}{4}$)(ω>0)是区间[$\frac{3}{4}π$,π]上的增函数,则ω的取值范围是(0,$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在锐角△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow m=({2sin({A+C}),\sqrt{3}})$,向量$\overrightarrow n=({cos2B,1-2{{cos}^2}\frac{B}{2}})$,且$\overrightarrow m∥\overrightarrow n$.
(Ⅰ)求角B的大小;
(Ⅱ)若sinAsinC=sin2B,求a-c的值.

查看答案和解析>>

同步练习册答案