精英家教网 > 高中数学 > 题目详情
13.从个位数与十位数之和为偶数的两位数中任取一个,其中个位数为2或3的概率为(  )
A.$\frac{5}{9}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{4}{9}$

分析 个位数与十位数之和为偶数的两位数中,其个位数与十位数都为奇数,或都为偶数,由此利用列举法能求出个位数为2或3的概率.

解答 解:个位数与十位数之和为偶数的两位数中,
其个位数与十位数都为奇数,或都为偶数,
共有${C}_{5}^{1}{C}_{5}^{1}+{C}_{5}^{1}{C}_{4}^{1}$=45,
记“个位数与十位数之和为偶数的两位数中,其个位数为2或3”为事件A,
则A包含的结果:22,42,62,82,13,33,53,73,93,共9个,
由古典概率计算公式得P(A)=$\frac{9}{45}=\frac{1}{5}$.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知cos(2π-α)=$\frac{3}{5}$,tan(π-α)>0,求cotα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x-c,0<x≤1}\\{{x}^{2}-bx-1,x>1}\end{array}\right.$在(0,+∞)上不是单调函数,设b、c为常数
(1)若c=0,求b的取值范围;
(2)若b≤2,c>1,且f(c)-f(b)≠k(c2-b2),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD是正方形,PA是四棱锥P-ABCD的高,PA=AB=2,点M,N,E分别是PD,AD,CD的中点.
(1)求证:平面MNE∥平面ACP;
(2)求四面体AMBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在定义域内既是奇函数又是减函数的是(  )
A.y=$\frac{1}{x}$B.y=-x+$\frac{1}{x}$
C.y=-x|x|D.y=$\left\{\begin{array}{l}{-x+1,x>0}\\{-x-1,x≤0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正数a,b满足a+2b=2,则$\frac{1}{1+a}+\frac{1}{2+2b}$的最小值为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5. 如图,四棱柱ABCD-A1B1C1D1中,底面四边形ABCD为菱形,∠ABC=60°,AA1=AC=2,A1B=A1D=2$\sqrt{2}$,点E在线段A1D上.
(Ⅰ)证明:AA1⊥平面ABCD;
(Ⅱ)当$\frac{{A}_{1}E}{ED}$为何值时,A1B∥平面EAC,并求出此时三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为4π,且f($\frac{π}{3}$)=1,则f(x)的一个对称中心坐标是(  )
A.(-$\frac{2π}{3}$,0)B.(-$\frac{π}{3}$,0)C.($\frac{2π}{3}$,0)D.($\frac{5π}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=ax3+b3$\sqrt{x}$+4(a,b∈R),f[lg(log32)]=1,则f[lg(log23)]的值为(  )
A.-1B.3C.7D.8

查看答案和解析>>

同步练习册答案