精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x-c,0<x≤1}\\{{x}^{2}-bx-1,x>1}\end{array}\right.$在(0,+∞)上不是单调函数,设b、c为常数
(1)若c=0,求b的取值范围;
(2)若b≤2,c>1,且f(c)-f(b)≠k(c2-b2),求k的取值范围.

分析 (1)c=0时,得出$f(x)=\left\{\begin{array}{l}{lo{g}_{2}x}&{0<x≤1}\\{{x}^{2}-bx-1}&{x>1}\end{array}\right.$,而f(x)在(0,+∞)上不是单调函数,从而根据二次函数和分段函数的单调性得到$\frac{b}{2}>1$,或$\left\{\begin{array}{l}{\frac{b}{2}≤1}\\{{1}^{2}-b•1-1<lo{g}_{2}1}\end{array}\right.$,这样便可求出b的取值范围;
(2)可判断出f(x)在(1,+∞)上为增函数,从而要使f(x)在(0,+∞)上不是单调函数,便可得出b>c,从而求出f(c)-f(b)=c2-bc,这便得到$k≠\frac{c}{c+b}$,而可求得$\frac{c}{c+b}<\frac{1}{2}$,从而便有$k≥\frac{1}{2}$,这便得出了k的取值范围.

解答 解:(1)c=0时,$f(x)=\left\{\begin{array}{l}{lo{g}_{2}x}&{0<x≤1}\\{{x}^{2}-bx-1}&{x>1}\end{array}\right.$;
∵f(x)在(0,+∞)上不是单调函数;
∴$\frac{b}{2}>1$,或$\left\{\begin{array}{l}{\frac{b}{2}≤1}\\{{1}^{2}-b•1-1<lo{g}_{2}1}\end{array}\right.$;
∴b>2,或0<b≤2;
∴b的取值范围为(0,+∞);
(2)b≤2;
∴$\frac{b}{2}≤1$;
∴f(x)在(1,+∞)上为增函数;
∴要使f(x)在(0,+∞)上不是单调函数,则:12-b•1-1<log21-c;
∴-b<-c;
∴b>c;
又c>1,∴b>1;
∴f(c)-f(b)=c2-bc-1-(b2-b2-1)=c2-bc;
∴c2-bc≠k(c2-b2);
∴$k≠\frac{{c}^{2}-bc}{{c}^{2}-{b}^{2}}=\frac{c}{c+b}$;
∵b>c>1;
∴b+c>2c;
∴$\frac{c}{c+b}<\frac{1}{2}$;
∴$k≥\frac{1}{2}$;
∴k的取值范围为$[\frac{1}{2},+∞)$.

点评 考查对数函数的单调性,以及二次函数和分段函数单调性的判断,已知函数求值的方法,不等式的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.按下列要求从12人中选出5人参加某项公益动.分别有多少种不同的选法?
(1)甲、乙两人都不入选.
(2)甲、乙两人至多1人入选.
(3)甲、乙、丙3人至少有1人入选.
(4)甲、乙、丙3人至多有2人入选.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{bn}的前n项和为Sn,数列{$\sqrt{{S}_{n}}$}是个首项为1公差为1的等差数列.
(1)求数列{bn}的通项公式;
(2)若数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和为Tn,问满足Tn>$\frac{1000}{2009}$的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.填空题
(1)sin240°=$-\frac{\sqrt{3}}{2}$,cos120°=$-\frac{1}{2}$,tan240°=$\sqrt{3}$.
(2)sin225°=$\frac{\sqrt{2}}{2}$,cos135°=$-\frac{\sqrt{2}}{2}$,tan(-330°)=$-\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.y=ln(x2-4|x|+3)的定义域为(-∞,-3)∪(-1,1)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将2红2白共4个球随机排成一排,则同色球均相邻的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为(  )
A.6B.$\frac{20}{3}$C.7D.$\frac{22}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.从个位数与十位数之和为偶数的两位数中任取一个,其中个位数为2或3的概率为(  )
A.$\frac{5}{9}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知AB为圆x2+y2=1的一条直径,点P为直线x-y+2=0上任意一点,则$\overrightarrow{PA}•\overrightarrow{PB}$的最小值为(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案