精英家教网 > 高中数学 > 题目详情
14.已知AB为圆x2+y2=1的一条直径,点P为直线x-y+2=0上任意一点,则$\overrightarrow{PA}•\overrightarrow{PB}$的最小值为(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

分析 运用向量加减运算和数量积的性质,可得$\overrightarrow{PA}•\overrightarrow{PB}$=($\overrightarrow{PO}$+$\overrightarrow{OA}$)•($\overrightarrow{PO}$+$\overrightarrow{OB}$)=|$\overrightarrow{PO}$|2-r2,即为d2-r2,运用点到直线的距离公式,可得d的最小值,进而得到结论.

解答 解:由$\overrightarrow{PA}•\overrightarrow{PB}$=($\overrightarrow{PO}$+$\overrightarrow{OA}$)•($\overrightarrow{PO}$+$\overrightarrow{OB}$)
=$\overrightarrow{PO}$2+$\overrightarrow{PO}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$)+$\overrightarrow{OA}$•$\overrightarrow{OB}$=|$\overrightarrow{PO}$|2-r2
即为d2-r2,其中d为圆外点到圆心的距离,r为半径,
因此当d取最小值时,$\overrightarrow{PA}•\overrightarrow{PB}$的取值最小,
可知d的最小值为$\frac{|0-0+2|}{\sqrt{2}}$=$\sqrt{2}$,
故$\overrightarrow{PA}•\overrightarrow{PB}$的最小值为2-1=1.
故选:A.

点评 本题考查直线与圆的位置关系以及向量的数量积的运算,注意运用向量的平方即为模的平方,以及点到直线的距离公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x-c,0<x≤1}\\{{x}^{2}-bx-1,x>1}\end{array}\right.$在(0,+∞)上不是单调函数,设b、c为常数
(1)若c=0,求b的取值范围;
(2)若b≤2,c>1,且f(c)-f(b)≠k(c2-b2),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5. 如图,四棱柱ABCD-A1B1C1D1中,底面四边形ABCD为菱形,∠ABC=60°,AA1=AC=2,A1B=A1D=2$\sqrt{2}$,点E在线段A1D上.
(Ⅰ)证明:AA1⊥平面ABCD;
(Ⅱ)当$\frac{{A}_{1}E}{ED}$为何值时,A1B∥平面EAC,并求出此时三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为4π,且f($\frac{π}{3}$)=1,则f(x)的一个对称中心坐标是(  )
A.(-$\frac{2π}{3}$,0)B.(-$\frac{π}{3}$,0)C.($\frac{2π}{3}$,0)D.($\frac{5π}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$y=sin(2x-\frac{π}{3})$与$y=cos(2x+\frac{2π}{3})$的图象关于直线x=a对称,则a可能是(  )
A.$\frac{π}{24}$B.$\frac{π}{12}$C.$\frac{π}{8}$D.$\frac{11π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b∈R,则“$\sqrt{a-1}>\sqrt{b-1}$”是“logab<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义在(-2,2)上的奇函数f(x)恰有3个零点,当x∈(0,2)时,f(x)=xlnx-a(x-1)(a>0),则a的取值范围是{a|a≥2ln2,或a=1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=ax3+b3$\sqrt{x}$+4(a,b∈R),f[lg(log32)]=1,则f[lg(log23)]的值为(  )
A.-1B.3C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{f(x-3),x>0}\\{{e}^{x}+lo{g}_{2}[{8}^{x+1}×(\frac{1}{4})^{-2}],x≤0}\end{array}\right.$,则f(6)=8.

查看答案和解析>>

同步练习册答案