精英家教网 > 高中数学 > 题目详情
7.将0,1,2,3,4,5这六个数字,每次取三个不同的数字,把其中最大的数字放在百位上排成三位数,这样的三位数有40个.

分析 根据百位上的数字可以分为3类,根据分类计数原理可得.

解答 解:第一类,百位为5时,有A52=20个,
第二类,百位为4时,有A42=12个,
第三类,百位为3时,有A32=6个,
第三类,百位为2时,有A22=2个,
根据分类计数原理可得,20+12+6+2=40个,
故答案为:40.

点评 本题考查了分类计数原理,关键是分类,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知角β的顶点为坐标原点O,始边在x轴的正半轴上,终边经过点P(-4,3)
(1)求sinβ与sin2β的值
(2)已知函数f(x)=3cos(x-$\frac{π}{4}$),求函数f(x)的最大值和最小正周期,并求f(β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$sin(\frac{π}{6}-α)=cos(\frac{π}{6}+α)$,则tanα=(  )
A.-1B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法:
①两个相交平面组成的图形叫做二面角;
②两条异面直线分别和一个二面角的两个半平面垂直,则这两条异面直线所成的角与二面角的平面角相等或互补;
③二面角的平面角是从棱上一点出发,分别在两个半平面内作射线所成的角;
④二面角的大小与其平面角的顶点在棱上的位置没有关系,
其中正确的是(  )
A.①③B.②④C.③④D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f (x)=ln x+$\frac{1}{x}$-1,g(x)=$\frac{x-1}{lnx}$
(Ⅰ)求函数 f (x)的最小值;
(Ⅱ)求函数g(x)的单调区间;
(Ⅲ)求证:直线 y=x不是曲线 y=g(x)的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若AB是圆x2+(y-3)2=1的任意一条直径,O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OB}$=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知两点A(0,2)、B=(3,-1),向量$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow{b}$=(1,m),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数m=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在长方体ABCD-A1B1C1D1中,AB=BC=$\sqrt{2}$AA1,P、Q分别是棱CD、CC1上的动点,如图.当BQ+QD1的长度取得最小值时,二面角B1-PQ-D1的余弦值的取值范围为(  )
A.[0,$\frac{1}{5}$]B.[0,$\frac{\sqrt{10}}{10}$]C.[$\frac{1}{5}$,$\frac{\sqrt{10}}{10}$]D.[$\frac{\sqrt{10}}{10}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.集合A={x|-2<x<1},B={x|-1<x<2},则A∪B=(  )
A.(-2,1)B.(-1,1)C.(-2,2)D.(-1,2)

查看答案和解析>>

同步练习册答案