精英家教网 > 高中数学 > 题目详情
9.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.解答下列问题:
(1)建立y与x之间的函数关系式;
(2)小明家第二季度交纳水费的情况如下:
月份3月4月5月
交费金额303442.6
问小明家这个季度共用水多少立方米?

分析 (1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y与x的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x-20),即y=2.6x-12,可得y与x之间的函数关系式;
(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x-12计算用水量.

解答 解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;
当x>20时,y与x的函数表达式是:y=2×20+2.6(x-20)=2.6x-12;
所以y=$\left\{\begin{array}{l}{2x,0≤x≤20}\\{2.6x-12,x>20}\end{array}\right.$;
(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,
六月份的水费超过40元,x>20,此时y=2.6x-12,
所以把y=30代入y=2x中得,
2x=30,x=15;
把y=34代入y=2x中得,
2x=34,x=17;
把y=42.6代入y=2.6x-12中得,
2.6x-12=42.6,x=21.
所以,15+17+21=53.
答:小明家这个季度共用水53m3

点评 本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景-建立模型-解释、应用和拓展”的数学学习模式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,求证:
(1)[g(x)]2-[f(x)]2=1
(2)f(2x)=2f(x)•g(x)
(3)f(2x)=[g(x)]2+[f(x)]2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.将下列弧度转换为角度:
(1)$\frac{4π}{5}$
(2)$\frac{11π}{6}$
(3)-$\frac{7π}{4}$
(4)-$\frac{5π}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知α,β∈($\frac{3π}{4}$,π),sin(α+β)=-$\frac{3}{5}$,sin(β-$\frac{π}{4}$)=$\frac{12}{13}$,则sin(α+$\frac{π}{4}$)=-$\frac{33}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC中,b=8,c=3,sinA=$\sqrt{\frac{247}{16}}$,求a的值,并判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.经过点P(-2,4)和点Q(0,2),并且圆心在直线x+y=0上,求出圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知公差不为零的等差数列{an}各项为正数,前n项和为Sn,2S2=a2〔a2+1〕,a1,a2,a4为等比数列.
(1)求通项公式an
(2)设bn=2Sn+$\frac{3}{{a}_{n}}$,求bn的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设有两个命题:命题p:函数f(x)=-x2+ax+1在[1,∞)上是单调递减函数;命题q:已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线2x+y=1平行,且f(x)在[a,a+1]上单调递减,若命题p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.算式${256}^{-\frac{1}{8}}$+${(\frac{1}{2\sqrt{2}})}^{\frac{2}{3}}$+(-2015)0+${(0.125)}^{-\frac{1}{3}}$=4.

查看答案和解析>>

同步练习册答案