精英家教网 > 高中数学 > 题目详情

【题目】平面直角坐标系 中,倾斜角为 的直线 过点 ,以原点 为极点, 轴的正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 .
(1)写出直线 的参数方程( 为常数)和曲线 的直角坐标方程;
(2)若直线 交于 两点,且 ,求倾斜角 的值.

【答案】
(1)解:直线 的参数方程为 ( 为参数),
曲线 的直角坐标方程:
(2)解:把直线的参数方程代入 ,得

根据直线参数的几何意义,
.
又因为
所以 .
【解析】(1)结合直角坐标系中直线的特征求得直线l的参数方程,求曲线C的直角坐标方程时先利用极坐标系将曲线C的方程化为参数方程,再求得其直角坐标方程;(2)利用交点的特征表示出点A,B坐标之间的关系,再根据直线参数的几何意义表示出两个模长的积,从而求得α的值,同时需根据点A,B的存在性判断α是否适合.
【考点精析】本题主要考查了极坐标系和直线的参数方程的相关知识点,需要掌握平面内取一个定点O,叫做极点;自极点O引一条射线OX叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系;经过点,倾斜角为的直线的参数方程可表示为为参数)才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在长方体 中, ,点 在棱 上移动,则直线 所成角的大小是 , 若 ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,恒成立,求实数m的取值范围;

(2)是否存在整数a、b(其中a、b是常数,且a<b),使得关于x的不等式的解集为?若存在,求出a、b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面程序框图中,若输入互不相等的三个正实数a,b,c(abc≠0),要求判断△ABC的形状,则空白的判断框应填入(
A.a2+b2>c2
B.a2+c2>b2
C.b2+c2>a2
D.b2+a2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋内装有6个球,这些球依次被编号为1、2、3、……、6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).

(1)从袋中任意取出一个球,求其重量大于其编号的概率;

(2)如果不放回地任意取出2个球,求它们重量相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥PABCDPC⊥底面ABCDADBCAD=2BC=2,PC=2,ABC是以AC为斜边的等腰直角三角形EPD的中点.

(1)求证:平面EAC⊥平面PCD

(2)求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点(1,13),且函数 是偶函数.

(1)求的解析式;

(2)已知,,求函数在[,2]上的最大值和最小值;

(3)函数的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由经验得知,在某商场付款处排队等候付款的人数及概率如表:

排队人数

人以上

概率

(1)至多有人排队的概率是多少?

(2)至少有人排队的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有xf′(x)>x2+3f(x),则不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集为(
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)

查看答案和解析>>

同步练习册答案