分析 将含有绝对值的不等式,通过分类讨论,转化为不含绝对值的不等式解,分类时按照绝对值内的值为0的点:-10,2进行分类讨论分三类,分别讨论,最后求出它们的并集即可.
解答 解:不等式|x+10|-|x-2|≥8化为:
$\left\{\begin{array}{l}{x>2}\\{x+10-x+2≥8}\end{array}\right.$或 $\left\{\begin{array}{l}{-10≤x≤2}\\{x+10+x-2≥8}\end{array}\right.$或 $\left\{\begin{array}{l}{x<-10}\\{-x-10+x-2≥8}\end{array}\right.$,
解得 x>2或0≤x≤2或 x∈∅,
即 x≥0
故不等式的解集为[0,+∞).
故答案为:[0,+∞).
点评 本小题主要考查含绝对值的不等式的解法,对学生灵活应用能力要求较高,但涵盖知识点少计算量小,属于基础性题目.
科目:高中数学 来源: 题型:解答题
| 物体重量(单位g) | 1 | 2 | 3 | 4 | 5 |
| 弹簧长度(单位cm) | 1.5 | 3 | 4 | 5 | 6.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,π) | B. | [0,$\frac{π}{4}$] | C. | [0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π) | D. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|1<x≤2} | B. | {x|1≤x≤2} | C. | {x|x<1} | D. | {x|-2≤x<1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com