精英家教网 > 高中数学 > 题目详情
12.△ABC的内角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(a,c),$\overrightarrow{n}$=(1-2cosA,2cosC-1),$\overrightarrow{m}∥\overrightarrow{n}$
(Ⅰ)若b=5,求a+c值;
(Ⅱ)若$tan\frac{B}{2}=\frac{1}{2}$,且角A是△ABC中最大内角,求角A的大小.

分析 (Ⅰ)利用平面向量平行的性质,正弦定理,两角和的正弦函数公式,三角形内角和定理可求sinA+sinC=2sinB,由正弦定理及已知即可得解.
(Ⅱ)由已知利用倍角公式,同角三角函数基本关系式可求sinB,cosB的值,可求2sinA+cosA=2,联立sin2A+cos2A=1即可解得cosA的值,结合A是最大角,即可得解A的值.

解答 (本大题满分12分)
解:(Ⅰ)因为:$\overrightarrow m∥\overrightarrow n⇒a(2cosC-1)=c(1-2cosA)$,
所以,2sinAcosC-sinA=sinC-2sinCcosA,
可得:2sinAcosC+2sinCcosA=2sin(A+C)=sinC+sinA,
所以,sinA+sinC=2sinB,
由正弦定理得2b=a+c=10.….6分
(Ⅱ)$tan\frac{B}{2}=\frac{1}{2}⇒tanB=\frac{4}{3}、sinB=\frac{4}{5}、cosB=\frac{3}{5}$,
又因为sinA+sinC=2sinB=sinA+sin(π-A-B),
则,2sinA+cosA=2,
又sin2A+cos2A=1,
所以,解得$cosA=\frac{3}{5}或cosA=0$,
由于A是最大角,
所以,$A=\frac{π}{2}$.….12分

点评 本题主要考查了平面向量平行的性质,正弦定理,两角和的正弦函数公式,三角形内角和定理,倍角公式,同角三角函数基本关系式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.某人欲从某车站乘车出差,已知该站发往各站的客车平均每小时一班,则此人等车时间不多于10分钟的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{10}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{1,x为有理数}\\{0,x为无理数}\end{array}\right.$,给出下列三个命题:
①函数f(x)为偶函数;
②函数f(x)是周期函数; 
③存在xi(i=1,2,3),使得(xi,f(xi))为顶点的三角形是等边三角形.
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知z1,z2是两个不相等的复数且z1=1+i,则复数$\frac{{z}_{1}-{z}_{2}}{2-{\overline{{z}_{1}}z}_{2}}$的模为(  )
A.$\frac{\sqrt{2}}{2}$B.1C.2D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(3x)=2x•log23,则f(21007)的值等于2014.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解不等式|x+10|-|x-2|≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.点P是直线y=x-1上的动点,过点P作圆C:x2+(y-2)2=1的切线,则切线长的最小值是(  )
A.$\frac{3\sqrt{2}}{2}$B.$\sqrt{14}$C.$\frac{\sqrt{14}}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中   (  )
A.最长的是AB,最短的是ACB.最长的是AC,最短的是AB
C.最长的是AB,最短的是ADD.最长的是AD,最短的是AC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.集合{-1,0,1}共有7个非空子集.

查看答案和解析>>

同步练习册答案