【题目】如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点.
(1)证明:EF∥平面PAB;
(2)若二面角P-AD-B为60°.
①证明:平面PBC⊥平面ABCD;
②求直线EF与平面PBC所成角的正弦值.
【答案】(1)证明见解析;(2)①证明见解析;②.
【解析】
试题分析:(1)要证明平面,可以先证明平面,利用线面平行的判定定理,即可证明平面;(2)①要证明平面平面,可用面面垂直的判定定理,即只需证明平面即可;②由①平面,所以为直线与平面所成的角,由及已知,得为直角,即可计算的长度,在中,即计算直线与平面所成的角的正弦值.
试题解析:(1)证明:如图,取PB中点M,连接MF,AM.
因为F为PC中点,故MF∥BC且MF=BC.由已知有BC∥AD,BC=AD.
又由于E为AD中点,因而MF∥AE且MF=AE,故四边形AMFE为平行四边形,
所以EF∥AM.又AM平面PAB,而EF平面PAB,所以EF∥平面PAB.
(2)①证明:如图,连接PE,BE.
因为PA=PD,BA=BD,而E为AD中点,故PE⊥AD,BE⊥AD,
所以∠PEB为二面角P-AD-B的平面角.
在△PAD中,由PA=PD=,AD=2,可解得PE=2.
在△ABD中,由BA=BD=,AD=2,可解得BE=1.
在△PEB中,PE=2,BE=1,∠PEB=60°,由余弦定理,可解得PB=,
从而∠PBE=90°,即BE⊥PB.
又BC∥AD,BE⊥AD,从而BE⊥BC,因此BE⊥平面PBC.
又BE平面ABCD,所以平面PBC⊥平面ABCD.
②连接BF.由①知,BE⊥平面PBC,所以∠EFB为直线EF与平面PBC所成的角.
由PB=及已知,得∠ABP为直角.
而MB=PB=,可得AM=,故EF=.
又BE=1,故在Rt△EBF中,sin∠EFB==.
所以直线EF与平面PBC所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】销售甲、乙两种商品所得利润分别是P(单位:万元)和Q(单位:万元),它们与投入资金t(单位:万元)的关系有经验公式P= t,Q= .今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(单位:万元),
(1)试建立总利润y(单位:万元)关于x的函数关系式;
(2)当对甲种商品投资x(单位:万元)为多少时?总利润y(单位:万元)值最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x| >0},集合B={x|y=lg(﹣x2+3x+28)},集合C={x|m+1≤x≤2m﹣1}.
(1)求(RA)∩B;
(2)若B∪C=B,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成小块地,在总共小块地中,随机选小块地种植品种甲,另外小块地种植品种乙.
(1)假设,求第一大块地都种植品种甲的概率;
(2)试验时每大块地分成小块,即,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:
甲 | ||||||||
乙 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=( )x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1﹣|x|),则关于h(x)有下列命题:
①h(x)的图象关于原点对称;
②h(x)为偶函数;
③h(x)的最小值为0;
④h(x)在(0,1)上为减函数.
其中正确命题的序号为: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工程设备租赁公司为了调查A,B两种挖掘机的出租情况,现随机抽取了这两种挖掘机各100台,分别统计了每台挖掘机在一个星期内的出租天数,统计数据如下表:
(I)根据这个星期的统计数据,将频率视为概率,求该公司一台A型挖掘机,一台B型挖掘机一周内合计出租天数恰好为4天的概率;
(II)如果A,B两种挖掘机每台每天出租获得的利润相同,该公司需要从A,B两种挖掘机中购买一台,请你根据所学的统计知识,给出建议应该购买哪一种类型,并说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数与有相同的极值点.
(I)求函数的解析式;
(II)证明:不等式(其中e为自然对数的底数);
(III)不等式对任意恒成立,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程为,双曲线的两条渐近线分别为, ,过椭圆的右焦点作直线,使,又与交于点,设直线与椭圆的两个交点由上至下依次为, .
(1)若与所成的锐角为,且双曲线的焦距为4,求椭圆的方程;
(2)求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com