精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P-ABCD的底面ABCD是平行四边形,BA=BD=,AD=2,PA=PD=,E,F分别是棱AD,PC的中点.

(1)证明:EF平面PAB;

(2)若二面角P-AD-B为60°

证明:平面PBC平面ABCD;

求直线EF与平面PBC所成角的正弦值.

【答案】(1)证明见解析(2)证明见解析

【解析】

试题分析:(1)要证明平面,可以先证明平面,利用线面平行的判定定理,即可证明平面;(2)要证明平面平面,可用面面垂直的判定定理,即只需证明平面即可;平面,所以为直线与平面所成的角及已知,得为直角,即可计算的长度,在中,即计算直线与平面所成的角的正弦值.

试题解析:(1)证明:如图,取PB中点M,连接MF,AM

因为F为PC中点,故MFBC且MF=BC由已知有BCAD,BC=AD

又由于E为AD中点,因而MFAE且MF=AE,故四边形AMFE为平行四边形,

所以EFAM又AM平面PAB,而EF平面PAB,所以EF平面PAB

(2)证明:如图,连接PE,BE

因为PA=PD,BA=BD,而E为AD中点,故PEAD,BEAD,

所以PEB为二面角P-AD-B的平面角.

PAD中,由PA=PD=,AD=2,可解得PE=2

ABD中,由BA=BD=,AD=2,可解得BE=1

PEB中,PE=2,BE=1,PEB=60°,由余弦定理,可解得PB=

从而PBE=90°,即BEPB

又BCAD,BEAD,从而BEBC,因此BE平面PBC

又BE平面ABCD,所以平面PBC平面ABCD

连接BF知,BE平面PBC,所以EFB为直线EF与平面PBC所成的角.

由PB=及已知,得ABP为直角.

而MB=PB=,可得AM=,故EF=

又BE=1,故在RtEBF中,sinEFB=

所以直线EF与平面PBC所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:方程表示焦点在x轴上的椭圆;命题q:双曲线的离心率e.若命题“pq”为真命题,“pq”为假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】销售甲、乙两种商品所得利润分别是P(单位:万元)和Q(单位:万元),它们与投入资金t(单位:万元)的关系有经验公式P= t,Q= .今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(单位:万元),
(1)试建立总利润y(单位:万元)关于x的函数关系式;
(2)当对甲种商品投资x(单位:万元)为多少时?总利润y(单位:万元)值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x| >0},集合B={x|y=lg(﹣x2+3x+28)},集合C={x|m+1≤x≤2m﹣1}.
(1)求(RA)∩B;
(2)若B∪C=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场计划种植某种新作物,为此对这种作物的两个品种分别称为品种甲和品种乙进行田间试验选取两大块地,每大块地分成小块地,在总共小块地中,随机选小块地种植品种甲,另外小块地种植品种乙

1假设,求第一大块地都种植品种甲的概率;

2试验时每大块地分成小块,即,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量单位:kg/hm2如下表:

分别求品种甲和品种乙的每公顷产量的样本平均和样本方差;根据试验结果,你认为应该种植哪一品种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1﹣|x|),则关于h(x)有下列命题:
①h(x)的图象关于原点对称;
②h(x)为偶函数;
③h(x)的最小值为0;
④h(x)在(0,1)上为减函数.
其中正确命题的序号为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工程设备租赁公司为了调查A,B两种挖掘机的出租情况,现随机抽取了这两种挖掘机各100台,分别统计了每台挖掘机在一个星期内的出租天数,统计数据如下表:


(I)根据这个星期的统计数据,将频率视为概率,求该公司一台A型挖掘机,一台B型挖掘机一周内合计出租天数恰好为4天的概率;

(II)如果A,B两种挖掘机每台每天出租获得的利润相同,该公司需要从A,B两种挖掘机中购买一台,请你根据所学的统计知识,给出建议应该购买哪一种类型,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有相同的极值点.

(I)求函数的解析式;

(II)证明:不等式(其中e为自然对数的底数);

(III)不等式对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为,双曲线的两条渐近线分别为 ,过椭圆的右焦点作直线,使,又交于点,设直线与椭圆的两个交点由上至下依次为 . 

(1)若所成的锐角为,且双曲线的焦距为4,求椭圆的方程;

(2)求的最大值.

查看答案和解析>>

同步练习册答案