精英家教网 > 高中数学 > 题目详情
将一个棱长为4cm的立方体表面涂上红色后,再均匀分割成棱长为1cm的小正方体.从涂有红色面的小正方体中随机取出一个小正方体,则这个小正方体表面的红色面积不少于2cm2的概率是(  )
A、
4
7
B、
1
2
C、
3
7
D、
1
7
考点:古典概型及其概率计算公式
专题:概率与统计
分析:大正方体被分割成64个小正方体:3面涂有红色、2面涂有红色、1面涂有红色和没有涂红色的,找出前两类即可.
解答: 解:∵正方体的棱长等于4cm,
∴将正方体分割成棱长为1cm的小正方体,总共有43=64个
其中位于大正方体的8个顶点处的小正方体,有3面涂有红色,共8个;
位于大正方体的12条棱处的小正方体,除了顶点处的小正方体外,
其它的小正方体有2面涂有红色,总共有2×12=24个;
位于大正方体内部,没有任何一个面与外界接触的小正方体总共有2×2×2=8个,
还有只有1个面有红色的个数为64-8-24-8=24个,
∴涂有红色面的小正方体共8+24+24=56个
其中有2面或3面是红色的小正方体(即红色面积不少于2cm2的)个数为8+24=32个,
∴所求概率为
32
56
=
4
7

故选:A
点评:本题考查古典概型及其概率公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合P={3,log2a},Q={a,b},若P∩Q={0},则P∪Q=(  )
A、{3,0}
B、{3,1,0}
C、{3,2,0}
D、{3,2,1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:

从编号为1,2,3,4,5的五个大小完全相同的小球中随机取出3个,用ξ表示其中编号为奇数的小球的个数,则Eξ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线3x-4y+1=0被半径为
5
,圆心在直线y=2x-1上的圆截得弦长为4,求此圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
a+x2+2x,(x<0)
f(x-1),(x≥0)
,且函数y=f(x)+x恰有3个不同的零点,则实数a的取值范围是(  )
A、(-∞,1]
B、(0,1]
C、(-∞,0]
D、(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x>0,y<0,命题q:x>y,
1
x
1
y
,则p是q的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,动点P到两点F1(-1,0),F2(1,0)的距离之和为4,设P点轨迹为C.
(Ⅰ)求C的方程;
(Ⅱ)曲线C上不同的两点A(x1,y1)、B(x2,y2)满足:
AF2
F2B
,x1+x2=
1
2
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点列Pn(an,bn)在直线l:y=2x+1上,P1为直线l与y轴的交点,等差数列{an}的公差为1,(n∈N+
(1)求数列{an}、{bn}的通项公式;
(2)设Cn=
1
n|P1Pn|
(n≥2),求C1+C2+…+Cn

查看答案和解析>>

科目:高中数学 来源: 题型:

等腰直角三角形ACB中∠C=90°,CA=CB=a,点P在AB上,且
.
AP
.
AB
(0≤λ≤1),则
.
CA
.
CP
的最大值为
 

查看答案和解析>>

同步练习册答案