精英家教网 > 高中数学 > 题目详情
已知f(x)=ax-
1
x
,g(x)=lnx,(x>0,a∈R是常数).
(1)求曲线y=g(x)在点P(1,g(1))处的切线l.
(2)是否存在常数a,使l也是曲线y=f(x)的一条切线.若存在,求a的值;若不存在,简要说明理由.
(3)设F(x)=f(x)-g(x),讨论函数F(x)的单调性.
(1)g(1)=0,所以P的坐标为(1,0),
g′(x)=
1
x
,则切线的斜率k=g′(1)=1,
所以直线l的方程为y-0=1(x-1),化简得y=x-1;
(2)由f(x)=ax-
1
x
,得f′(x)=a+
1
x2

设y=f(x)在x=x0处的切线为l,
则有
ax0-
1
x0
=x0-1
a+
1
x02
=1
,解得
x0=2
a=
3
4

即当a=
3
4
时,l是曲线y=f(x)在点Q(2,1)的切线;
(3)F′(x)=a+
1
x2
-
1
x
=a+(
1
x
-
1
2
)
2
-
1
4

a≥
1
4
a-
1
4
≥0
时,F′(x)≥0,F(x)在(0,+∞)单调递增;
当a=0时,F′(x)=
1
x2
-
1
x
=
1-x
x2
,F(x)在(0,1]单调递增,在(1,+∞)单调递减;
0<a<
1
4
时,解F′(x)=0得x1=
1-
1-4a
2a
x2=
1+
1-4a
2a

F(x)在(0,x1]和(x2,+∞)单调递增,在(x1,x2]单调递减;
当a<0时,解F′(x)=0得x1=
1-
1-4a
2a
>0
x2=
1+
1-4a
2a
<0
(x2舍去),
F(x)在(0,x1]单调递增,在(x1,+∞)单调递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=A
x
+B
1-x
(A>0,B>0)

(1)求f(x)的定义域;
(2)求f(x)的最大值和最小值;
(3)若g(x)=
mx-1
+
1-nx
(m>n>0)
,如何由(2)的结论求g(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-
1x
,g(x)=lnx,(x>0,a∈R是常数).
(1)求曲线y=g(x)在点P(1,g(1))处的切线l.
(2)是否存在常数a,使l也是曲线y=f(x)的一条切线.若存在,求a的值;若不存在,简要说明理由.
(3)设F(x)=f(x)-g(x),讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-2
4-ax
 -1?(a>0且a≠1)

(1)求f(x)的定义域;
(2)是否存在实数a使得函数f(x)对于区间(2,+∞)上的一切x都有f(x)≥0?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
ax+1x-1
,x∈(1,+∞),f(2)=3
(1)求a;
(2)判断并证明函数单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖南模拟)已知f(x)=ax+
bx
+3-2a(a,b∈R)
的图象在点(1,f(1)处的切线与直线y=3x+1平行.
(1)求a与b满足的关系式;
(2)若a>0且f(x)≥3lnx在[1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案