精英家教网 > 高中数学 > 题目详情
已知数列{an},an=
1
2n(2n-1)
,求Sn
考点:数列的求和
专题:等差数列与等比数列
分析:利用裂项求和法和泰勒级数求解.
解答: 解:∵an=
1
2n(2n-1)
=
1
2n-1
-
1
2n

∴Sn=1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n

把ln(x+1)按泰勒级数展开得:
ln(x+1)=x-
1
2
x2+
1
3
x3-
1
4
x4+…+
1
2n-1
x2n-1-
1
2n
x2n
取x=1,则1-
1
2
+
1
3
-
1
4
+
1
5
-
1
6
+…+
1
2n-1
-
1
2n
=ln2.
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)在(0,+∞)上的导函数为f′(x),且不等式xf′(x)>f(x)恒成立,又常数a,b满足a>b>0,则下列不等式一定成立的是(  )
A、af(a)>bf(b)
B、bf(a)<af(b)
C、bf(a)>af(b)
D、af(a)<bf(b)

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={0},N={x∈Z|-1<x<1},则M∩N等于(  )
A、{-1,1}B、{-1}
C、{1}D、{0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2lnx
x
(x>0)
(1)求函数y=f(x)在x=
1
e
处的切线的斜率;
(2)求函数y=f(x)的最大值;
(3)设a>0,求函数h(x)=af(x)在[a,2a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
1
2
,an-1+1=2an(n≥2,n∈N).
(1)证明数列{an-1}是等比数列,并求an
(2)若数列{bn}满足:2b1+22b2+…2nbn=n•2n,求数列{bn}的通项公式;
(3)令cn=-2an•bn+(n+1)(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中有A=60°,AB=2,BC=
3
,试求角C大小及边AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是正项数列{an}的前n项和,且Sn=
1
4
an2+
1
2
an-
3
4

(1)求数列{an}的通项公式;     
(2)若an=2nbn,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-m2+m+2(m∈Z)在(0,+∞)上单调递增.
(1)求函数f(x)的解析式;
(2)设g(x)=f(x)-ax+1,a为实常数,求g(x)在区间[-1,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正四面体ABCD中,E为AD中点,F为BC中点,
(1)求异面直线AB与CE所成角的大小;
(2)求异面直线AF与CE所成角的大小;
(3)求直线CE与平面BCD所成角的大小.

查看答案和解析>>

同步练习册答案