精英家教网 > 高中数学 > 题目详情
2.设f(x)=asin2x+bcos2x,a、b∈R,ab≠0,若f(x)≤f($\frac{π}{6}$)对一切x∈R恒成立,则
①f($\frac{11π}{12}$)=0;
②f($\frac{7π}{10}$)<f($\frac{π}{5}$);
③f(x)是奇函数;
④f(x)的单调递减区间是[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],(k∈Z)
以上结论正确的是①②④.

分析 先将f(x)=asin2x+bcos2x,a>0,b>0,变形为f(x)=$\sqrt{{a}^{2}+{b}^{2}}$sin(2x+∅),再由f(x)≤f($\frac{π}{6}$)对一切x∈R恒成立得a,b之间的关系,然后顺次判断命题真假.

解答 解:①f(x)=asin2x+bcos2x=$\sqrt{{a}^{2}+{b}^{2}}$sin(2x+∅),
由f(x)≤f($\frac{π}{6}$)对一切x∈R恒成立得f($\frac{π}{6}$)=$\sqrt{{a}^{2}+{b}^{2}}$=asin$\frac{π}{3}$+bcos$\frac{π}{3}$=$\frac{\sqrt{3}a}{2}+\frac{b}{2}$,
即$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{\sqrt{3}a}{2}$+$\frac{b}{2}$,
两边平方整理得:a=$\sqrt{3}$b>0.
∴f(x)=$\sqrt{3}$bsin2x+bcos2x=2bsin(2x+$\frac{π}{6}$).
①f($\frac{11π}{12}$)=2bsin($\frac{11π}{6}$+$\frac{π}{6}$)=0,故①正确;
②由f($\frac{7π}{10}$)=$2bsin(2×\frac{7π}{10}+\frac{π}{6})=2bsin$($π+\frac{17π}{30}$)<0,
而f($\frac{π}{5}$)=2bsin($\frac{17π}{30}$)=2bsin$\frac{17π}{30}$>0,可得f($\frac{7π}{10}$)<f($\frac{π}{5}$)成立,故②正确.
③f(-x)≠±f(x),所以f(x)为非奇非偶函数,故③错误;
④$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ$,解得$x∈[kπ+\frac{π}{6},kπ+\frac{2π}{3}],k∈Z$故④正确;
故答案为:①②④

点评 本题考查三角函数中的恒等变换应用,考查复合三角函数的单调性,求得f(x)=2bsin(2x+$\frac{π}{6}$)是难点,也是关键,考查推理分析与运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足不等式组$\left\{\begin{array}{l}{y+1≥0}\\{x-y+1≥0}\\{x+y≤0}\end{array}\right.$,则(x-1)2+y2的取值范围[$\frac{1}{2}$,10].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知幂函数y=x${\;}^{{n}^{2}-2n-3}$(n∈Z)为偶函数,且在(0,+∞)上为减函数.
(1)求解析式;
(2)讨论h(x)=a$\sqrt{f(x)}$-$\frac{b}{xf(x)}$(a,b∈k)的奇偶性;
(3)求满足(t+1)${\;}^{-\frac{n}{3}}$<(3-2t)${\;}^{-\frac{n}{3}}$的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,两边之长a+b=8,∠C=60°,则△ABC的面积的最大值是4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(-4,0)、P(t,0)(t>0),在第一象限作正方形OPQR,过A、P、Q三点作⊙B,连接OQ,作CQ⊥OQ交圆于点C,连接OB、AQ.
(1)求证:∠CQP=∠AOQ;
(2)CQ的长度是否随着t的变化而变化?如果变化,请用含t的代数式表示CQ的长度,如果不变,求出CQ的长;
(3)当tan∠AQO=$\frac{1}{2}$时,
①求点C的坐标;
②点D是⊙B上的任意一点,求CD+$\sqrt{5}$OD的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列几种推理中是演绎推理的序号为(  )
A.由20<22,21<32,22<42…猜想2n-1<(n+1)2(n∈N+
B.半径为r的圆的面积s=πr2,单位圆的面积s=π
C.猜想数列$\frac{1}{1×2}$、$\frac{1}{2×3}$、$\frac{1}{3×4}$…的通项为an=$\frac{1}{n(n+1)}$(n∈N+
D.由平面直角坐标系中,圆的方程为(x-a)2+(y-b)2=r2推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=asinωx+bcosωx,其中ab≠0.
(1)已知ω=2,且函数y=f(x)的图象经过点($\frac{π}{4}$,2)和点($\frac{π}{2}$,-2).
①求y=f(x)的解析式;
②将函数y=f(x)的图象上各点的横坐标保持不变,纵坐标缩短为原来的$\frac{\sqrt{2}}{2}$倍,再把所得图象向右平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,若方程g(|x|)=m在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上有且只有2个不同的实根,求实数m的取值范围.
(2)已知ω=1,且函数y=f(x)在x=x0处取最大值,当实数a,b满足(a-$\sqrt{3}$)2+(b-1)2=1时,求tan($\frac{π}{4}$-x0)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn和为Sn,S1=-$\frac{1}{4}$,an-4SnSn-1=0(n≥2)
(1)若bn=$\frac{1}{{S}_{n}}$,证明{bn}是等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中,a1=1,(n+2)an+1an-1=an •an-1+(n+1)an2,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案