分析 由约束条件作出可行域,利用(x-1)2+y2的几何意义,即可行域内的动点到定点P(1,0)距离的平方得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{y+1≥0}\\{x-y+1≥0}\\{x+y≤0}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x-y+1=0}\\{y+1=0}\end{array}\right.$,解得B(-2,-1),
(x-1)2+y2的几何意义为可行域内的动点到定点P(1,0)距离的平方,
由图可知,可行域内的动点到定点P(1,0)距离的最小值为P到直线x+y=0的距离,等于$\frac{|1|}{\sqrt{2}}=\frac{\sqrt{2}}{2}$,
最大值为|PB|=$\sqrt{(-2-1)^{2}+(-1-0)^{2}}=\sqrt{10}$.
∴(x-1)2+y2的取值范围是[$\frac{1}{2}$,10].
故答案为:[$\frac{1}{2}$,10].
点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7\sqrt{2}}{10}$ | B. | -$\frac{7\sqrt{2}}{10}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | -$\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x1x2=1 | B. | 0<x1x2<1 | C. | 1<x1x2<2 | D. | x1x2≥2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,3] | B. | [1,7] | C. | [1,3] | D. | [1,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com