精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$x2-bx(b为常数),若函数f(x)的图象在点(1,f(1))处的切线与g(x)的图象相切,求实数b的值.

分析 由f(x)求出其导函数,把切点的横坐标代入导函数中即可表示出切线的斜率,根据切点坐标写出切线方程,再和g(x)联立,利用根的判别式为0,求解即可.

解答 解:f(x)=lnx得f′(x)=$\frac{1}{x}$,
函数f(x)的图象在点(1,f(1))处的切线的斜率为f′(1)=1,
切线方程为:y-0=x-1即y=x-1.
由已知得它与g(x)的图象相切,将y=x-1代入得x-1=$\frac{1}{2}$x2-bx,
即$\frac{1}{2}$x2-(b+1)x+1=0,
∴△=(b+1)2-2=0,解得b=±$\sqrt{2}$-1,
即实数b的值为±$\sqrt{2}$-1.

点评 本题考查导数的运用:求切线方程,考查直线和抛物线相切的条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|-4≤x≤-2},集合B={x|x-a≥0}.
(1)若A∩B=A,求a的取值范围;
(2)若全集U=R,且A⊆∁UB,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿地,使其一边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足不等式组$\left\{\begin{array}{l}{y+1≥0}\\{x-y+1≥0}\\{x+y≤0}\end{array}\right.$,则(x-1)2+y2的取值范围[$\frac{1}{2}$,10].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax3+|x-a|,a∈R  若a=-1,求函数y=f(x)的图象在x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=2lnx-$\frac{a}{2}$x2+(2a-1)x(a>0).若?x>0,使得不等式f(x)>3a-2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.i是虚数单位,$\overline{z}$表示复数z的共轭复数,若z=1+i,则$\frac{\overline{z}}{i}$+i•z=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知幂函数y=x${\;}^{{n}^{2}-2n-3}$(n∈Z)为偶函数,且在(0,+∞)上为减函数.
(1)求解析式;
(2)讨论h(x)=a$\sqrt{f(x)}$-$\frac{b}{xf(x)}$(a,b∈k)的奇偶性;
(3)求满足(t+1)${\;}^{-\frac{n}{3}}$<(3-2t)${\;}^{-\frac{n}{3}}$的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=asinωx+bcosωx,其中ab≠0.
(1)已知ω=2,且函数y=f(x)的图象经过点($\frac{π}{4}$,2)和点($\frac{π}{2}$,-2).
①求y=f(x)的解析式;
②将函数y=f(x)的图象上各点的横坐标保持不变,纵坐标缩短为原来的$\frac{\sqrt{2}}{2}$倍,再把所得图象向右平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,若方程g(|x|)=m在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上有且只有2个不同的实根,求实数m的取值范围.
(2)已知ω=1,且函数y=f(x)在x=x0处取最大值,当实数a,b满足(a-$\sqrt{3}$)2+(b-1)2=1时,求tan($\frac{π}{4}$-x0)的取值范围.

查看答案和解析>>

同步练习册答案