精英家教网 > 高中数学 > 题目详情
15.有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿地,使其一边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?

分析 根据直角三角形中的三角函数和图形求出矩形的长和宽,再表示出矩形的面积,利用倍角的正弦公式化简,再由正弦函数的最值求出矩形面积的最大值.

解答 解:令∠DOC=θ,DC=asinθ,AD=2acosθ
∴矩形ABCD的面积为S=AD•DC=2acosθ•asinθ=a2sin2θ,
当θ=$\frac{π}{4}$时,Smax=a2
∴AD=$\sqrt{2}$a.
故使得OA=OD=$\frac{\sqrt{2}}{2}$a,划出的矩形的面积最大.

点评 本题是实际问题为背景,考查了倍角的正弦公式,以及直角三角形中的三角函数,注重数学在实际中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知{an}是等差数列,且满足a1•a5=9,a2+a4=10.
(1)求数列{an}的通项公式
(2)求数列{an}的公差数列d>0时,{bn}满足bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合M={y|y≥-1},N={x|x-1≤x≤1},则M∩N=[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设方程log2x-($\frac{1}{2}$)x=0,log${\;}_{\frac{1}{2}}$x-($\frac{1}{2}$)x=0的根分别为x1、x2,则(  )
A.x1x2=1B.0<x1x2<1C.1<x1x2<2D.x1x2≥2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图是半径为1的半圆,且PQRS是半圆的内接矩形,设∠SOP=α,则其值为$\frac{π}{4}$时,矩形的面积最大,最大面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在5道题中有3道数学题和2道物理题,如果不放回的依次抽取2道题,则在第一次抽到数学题的条件下,第二次抽到物理题的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x,y满足不等式组$\left\{\begin{array}{l}{x≤2}\\{y≤3}\\{x+y≥2}\end{array}\right.$.则z=2x+y的取值范围为(  )
A.[-1,3]B.[1,7]C.[1,3]D.[1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$x2-bx(b为常数),若函数f(x)的图象在点(1,f(1))处的切线与g(x)的图象相切,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在锐角三角形ABC中,角A,B,C对边分别为a,b,c,B≠C,且a2sin(A+B)=(a2+c2-b2)sin(A+C).
(1)求证:A=2B;
(2)求$\frac{b}{b+c}$的取值范围.

查看答案和解析>>

同步练习册答案