精英家教网 > 高中数学 > 题目详情

【题目】所在的平面内,给出下列关系式:

.

则点依次为的(

A.内心、重心、垂心B.重心、内心、垂心C.重心、内心、外心D.外心、垂心、重心

【答案】C

【解析】

逐条判断。第一条是关于重心的性质;第二条取单位长度的向量,从而得出点的平分线上,这就涉及三角形的内心;第三条可以推导出垂直,从而和三角形的外心相关。

①由于,其中的中点,可知边上中线的三等分点(靠近线段),故的重心;

②向量,分别表示在边上取单位向量,它们的差是向量,当,即时,则点的平分线上,同理由,知点的平分线上,故的内心;

是以为边的平行四边形的一条对角线的长,而是该平行四边形的另一条对角线的长,表示这个平行四边形是菱形,即,同理有,故的外心.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,已知椭圆的离心率为,左、右焦点分别是,以为圆心以3为半径的圆与以为圆心以1为半径的圆相交,且交点在椭圆.

(1)求椭圆的方程;

(2)过椭圆上一动点的直线,过F2x轴垂直的直线记为,右准线记为

设直线与直线相交于点M,直线与直线相交于点N,证明恒为定值,并求此定值。

若连接并延长与直线相交于点Q,椭圆的右顶点A,设直线PA的斜率为,直线QA的斜率为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,,,,在边,关于直线的对称点分别为,的面积的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆上一点A关于原点的对称点为B,F为椭圆的右焦点,AF⊥BF,∠ABF=,则椭圆的离心率的取值范围为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的最小值;

(2)当时,求证方程在区间上有唯一实数根;

(3)当时,设函数两个不同的极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最值;

(2)讨论函数的单调性;

(3)当时,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,解关于x的不等式

2)若不等式对任意恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点AB且直线PAy轴于M直线PBy轴于N

求直线l的斜率的取值范围

O为原点求证为定值

查看答案和解析>>

同步练习册答案