【题目】已知函数
,
,
.
(1)当
,
时,求函数
的最小值;
(2)当
,
时,求证方程
在区间
上有唯一实数根;
(3)当
时,设
是
函数两个不同的极值点,证明:
.
【答案】(1)
(2)见解析(3)见解析
【解析】
(1)构造新函数y=
,求导判断单调性,得出最小值e.(2)变量分离a=-
=h(x),根据函数的单调性求出函数h(x)的最小值,利用a的范围证明在区间(0,2)上有唯一实数根;(3)求出
,问题转化为证
,令x1﹣x2=t,得到t<0,根据函数的单调性证明即可.
(1)当
=0,
时,
=
,求导y’=
=0的根x=1
所以y在(-
),(0,1)递减,在(1,+
)递增,
所以y
=e
(2)
+
=0,所以a=-
=h(x)
H’(x)=-
=0的根x=2
则h(x)在(0,2)上单调递增,在(2,+∞)上单调递减,
所以h(2)是y=h(x)的极大值即最大值,即![]()
所以函数f(x)在区间(0,2)上有唯一实数根;
(3)
=
-
F’(x)
-2ax-a=0的两根是
,![]()
∵x1,x2是函数F(x)的两个不同极值点(不妨设x1<x2),
∴a>0(若a≤0时,f'(x)>0,即F(x)是R上的增函数,与已知矛盾),
且F'(x1)=0,F'(x2)=0.∴
,
…
两式相减得:
,…
于是要证明
,即证明
,两边同除以
,
即证
,即证
,即证
,
令x1﹣x2=t,t<0.即证不等式
,当t<0时恒成立.
设
,∴
=![]()
设
,∴
,
当t<0,h'(t)<0,h(t)单调递减,
所以h(t)>h(0)=0,即
,
∴φ'(t)<0,∴φ(t)在t<0时是减函数.
∴φ(t)在t=0处取得极小值φ(0)=0.
∴φ(t)>0,得证.
∴
.
科目:高中数学 来源: 题型:
【题目】如图,已知圆
的方程为
,圆
的方程为
,若动圆
与圆
内切,与圆
外切.
(Ⅰ)求动圆圆心
的轨迹
的方程;
(Ⅱ)过直线
上的点
作圆
的两条切线,设切点分别是
,
,若直线
与轨迹
交于
,
两点,求
的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,离心率
,且椭圆的短轴长为2.
(1)球椭圆的标准方程;
(2)已知直线
过右焦点
,且它们的斜率乘积为
,设
分别与椭圆交于点
和
.
①求
的值;
②设
的中点
,
的中点为,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题,其中正确的序号是________(写出所有正确命题的序号).
①已知集合
,
,则映射
中满足
的映射共有
个;
②函数
的图象关于
对称的函数解析式为
;
③若函数
的值域为
,则实数
的取值范围是
;
④已知函数
的最大值为
,最小值为
,则
的值等于
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】20名高二学生某次数学考试成绩(单位:分)的频率分布直方图如图:
![]()
(1)求频率分布直方图中
的值;
(2)分别求出成绩落在
与
中的学生人数;
(3)从成绩在
的学生中任选2人,求此2人的成绩都在
中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-2ax-1+a,a∈R.
(1)若a=2,试求函数y=
(x>0)的最小值;
(2)对于任意的x∈[0,2],不等式f(x)≤a成立,试求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的发展,居民的储蓄存款逐年增长。设某地区城乡居民人民币储蓄存款
(单位:亿元)的数据如下:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
储蓄存款 | 3.4 | 3.6 | 4.5 | 4.9 | 5.5 | 6.1 | 7.0 |
(1)求
关于
的线性回归方程;
(2)2018年城乡居民储蓄存款前五名中,有三男和两女。现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率。
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,圆
经过椭圆
的两个焦点和两个顶点,点
在椭圆
上,且
,
.
(Ⅰ)求椭圆
的方程和点
的坐标;
(Ⅱ)过点
的直线
与圆
相交于
、
两点,过点
与
垂直的直线
与椭圆
相交于另一点
,求
的面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com