精英家教网 > 高中数学 > 题目详情
(10分)如图,在正方体中,求:
(1)异面直线所成的角;
(2)所成的角。
(1)异面直线所成的角90°
(2)所成的角60°
解:(1)




(2)连结,



为所求。
设正方体的棱长为a,则可求得

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题14分)在如图所示的几何体中,平面平面,且的中点.

(I)求证:
(II)求与平面所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图所示,四棱锥中,是矩形,三角形PAD为等腰直角三角形,分别为的中点。
(1)求证:∥平面
(2)证明:平面平面
(3)求四棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。
(1)求证:AB1//面BDC1
(2)若AA1=3,求二面角C1—BD—C的余弦值;
(3)若在线段AB1上存在点P,使得CP面BDC1,试求AA1的长及点P的位置。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,直三棱柱中,为棱的中点.
(1)求证:平面
(2)求与平面ADC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:如图,矩形平面分别是的中点,

(1)求证:直线直线
(2)若平面与平面所成的锐二面角为,能否确定使直线是异面直线的公垂线.若能确定,求出的值;若不能确定,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如下图(5),在三棱锥中,分别是的中点,,
(1)求证:平面
(2)求异面直线所成角的余弦值;
(3)求点到平面的距离。
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)已知在棱长为的正方体中,为棱的中点,为正方形的中心,点分别在直线上.

(1)若分别为棱的中点,求直线所成角的余弦值;
(2)若直线与直线垂直相交,求此时线段的长;
(3)在(2)的条件下,求直线所确定的平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂
足为点H.则以下命题中,错误的命题是
A.点H是△A1BD的垂心
B.AH垂直平面CB1D1
C.AH的延长线经过点C1
D.直线AHBB1所成角为45°

查看答案和解析>>

同步练习册答案