精英家教网 > 高中数学 > 题目详情
某射手射击1次,击中目标的概率是0.9.她连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是0.93×0.1;
③他至少击中目标1次的概率是1-0.14
④他击中目标2次的概率是0.81.
其中正确结论的序号是
 
(写出所有正确结论的序号)
考点:相互独立事件的概率乘法公式,互斥事件的概率加法公式
专题:概率与统计
分析:由题意知射击一次击中目标的概率是0.9,得到第3次击中目标的概率是0.9,连续射击4次,且各次射击是否击中目标相互之间没有影响,得到是一个独立重复试验,根据独立重复试验的公式得到恰好击中目标3次的概率和至少击中目标1次的概率,他击中目标的次数2次的概率是C42×0.92×(1-0.9)2=0.0488.
解答: 解:∵射击一次击中目标的概率是0.9,
∴第3次击中目标的概率是0.9,
∴①正确,
∵连续射击4次,且各次射击是否击中目标相互之间没有影响,
∴本题是一个独立重复试验,
根据独立重复试验的公式得到恰好击中目标3次的概率是C43×0.93×0.1
∴②不正确,
∵至少击中目标1次的概率用对立事件表示是1-0.14
∴③正确,
他击中目标的次数2次的概率是C42×0.92×(1-0.9)2=0.0488,
∴④不正确,
故答案为:①③.
点评:本题主要考查n次独立重复试验中恰好发生k次的概率,以及离散型随机变量的期望,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+x+1在x=1处时取得极值为0,则ab=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin2x+2
3
cos2x-
3
,函数g(x)=mcos(2x-
π
6
)-
3
2
m+2(m>0),若对任意x1∈[0,
π
4
],总存在x2∈[0,
π
4
],使得g(x1)=f(x2)成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x+lg
x
2-x

(1)求定义域;
(2)求f(x)+f(2-x)的值;
(3)猜想f(x)的图象具有怎样的对称性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设θ∈(
4
,π),则关于x,y的方程
x2
sinθ
+
y2
cosθ
=1所表示的曲线为(  )
A、长轴在y轴上的椭圆
B、长轴在x轴上的椭圆
C、实轴在y轴上的双曲线
D、实轴在x轴上的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-(a+b)x2+abx,这里0<a<b.
(Ⅰ)设f(x)在x=s与x=t处取得极值,其中s<t,求证:0<s<a<t<b;
(Ⅱ)设点A(s,f(s)),B(t,f(t)),求证:线段AB的中点C在曲线y=f(x)上.

查看答案和解析>>

科目:高中数学 来源: 题型:

4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为(  )
A、
1
3
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数f′(x)=ax2+bx+c的图象如图,则f(x)的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

(2)sin(-1071°)•sin99°+sin(-171°)•sin(-261°).

查看答案和解析>>

同步练习册答案