精英家教网 > 高中数学 > 题目详情
18.函数f(x)=$\frac{1}{2}$x3+sinx+2x的定义域为R,数列{an}是公差为d的等差数列,且a1+a2+a3+a4+…a2013<0,记m=f(a1)+f(a2)+f(a3)+…f(a2013),关于实数m,下列说法正确的是(  )
A.m恒为负数
B.m恒为正数
C.当d>0时,m恒为正数;当d<0时,m恒为负数
D.当d>0时,m恒为负数,当d<0时,m恒为正数

分析 由函数的解析式可得f(x)是奇函数,由它的导数f′(x)≥0,可得函数f(x)在R上是增函数.分d>0和d<0以及d=0三种情况,分别利用函数的奇偶性和单调性,求得 f(a1)+f(a2013)<0,f(a2)+f(a2012)<0,f(a3)+f(a2011)<0,…,从而得到m<0,从而得出结论.

解答 解:∵函数f(x)=$\frac{1}{2}$x3+sinx+2x的定义域为R、是奇函数,
且它的导数f′(x)=$\frac{3}{2}$x2+cosx+2≥0,故函数f(x)在R上是增函数.
因为数列{an}是公差为d的等差数列,分3种情况讨论:
①当d>0时,数列为递增数列,由a1+a2013<0,
可得a2013<-a1,∴f(a2013)<f(-a1)=-f(a1),∴2f(a1007)=f(a1)+f(a2013)<0.
同理可得,f(a2)+f(a2012)<0,f(a3)+f(a2011)<0,…
故 m=f(a1)+f(a2)+f(a3)+…+f(a2012)+f(a2013
=f(a1)+f(a2013)+f(a2)+f(a2012)+f(a3)+f(a2011)+…+f(a1007)<0.
②当d<0时,数列为递减数列,同理求得 m<0.
③当d=0时,该数列为常数数列,每一项都小于,故有f(an)<0,
综上,有m=f(a1)+f(a2)+f(a3)+…+f(a2012)+f(a2013)<0,
故选A.

点评 本题主要考查利用导数研究函数的单调性,函数的奇偶性的应用,等差数列的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.画出不等式组$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$表示的平面区域,设该平面区域为A,在此条件下解决下面问题:
(1)求A的面积;
(2)设B={(x-y,x+y)|(x,y)∈A},求B的面积;
(3)求z=3x+y的最值;
(4)求z=x2+(y+1)2的最小值;
(5)求z=$\frac{y+1}{x+1}$的值域;
(6)求z=ax+y(a>1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U={2,5,8},且∁UA={2},则集合A的真子集个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={0,m,2},B={x|x3-4x=0},若A=B,则m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{{4}^{x}+2}$(x∈R),点P1(x1,y1)、P2(x2,y2)是函数f(x)图象上的两个点,且x1+x2 =1.
(1)求y1+y2 的值;
(2)若记Sm=f($\frac{1}{m}$)+f($\frac{2}{m}$)+f($\frac{3}{m}$)+…+f($\frac{m}{m}$)(m∈N*),求Sm
(3)若不等式$\frac{{a}^{m}}{{S}_{m}}$<$\frac{{a}^{m+1}}{{S}_{m+1}}$对于m∈N*都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.试选择适当的方法表示下列集合:
(1)二次函数y=x2-4的函数值组成的集合;
(2)反比例函数y=$\frac{2}{x}$的自变量的值组成的集合;
(3)不等式3x≥4-2x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合M={x∈N|$\frac{6}{1+x}$∈Z},求M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若z+$\overline{z}$=4,z•$\overline{z}$=8,则$\frac{\overline{z}}{z}$=(  )
A.iB.-iC.±1D.±i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=ax3+bx2+cx+d在[-1,0]与[4,5]上的单调性相同,在[0,2]与[4,5]上的单调性相反.
(1)求c的值;
(2)当x为何值时,f(x)取得极值?并判断处这些极值点的横坐标与2、4的大小关系?
(3)f(x)的图象上是否存在点M(x0,y0),使f(x)在M处的切线斜率为3b?

查看答案和解析>>

同步练习册答案