8£®»­³ö²»µÈʽ×é$\left\{\begin{array}{l}{x-y+5¡Ý0}\\{x+y¡Ý0}\\{x¡Ü3}\end{array}\right.$±íʾµÄÆ½ÃæÇøÓò£¬Éè¸ÃÆ½ÃæÇøÓòΪA£¬ÔÚ´ËÌõ¼þϽâ¾öÏÂÃæÎÊÌ⣺
£¨1£©ÇóAµÄÃæ»ý£»
£¨2£©ÉèB={£¨x-y£¬x+y£©|£¨x£¬y£©¡ÊA}£¬ÇóBµÄÃæ»ý£»
£¨3£©Çóz=3x+yµÄ×îÖµ£»
£¨4£©Çóz=x2+£¨y+1£©2µÄ×îСֵ£»
£¨5£©Çóz=$\frac{y+1}{x+1}$µÄÖµÓò£»
£¨6£©Çóz=ax+y£¨a£¾1£©µÄ×î´óÖµ£®

·ÖÎö £¨1£©×÷³ö²»µÈʽ×é¶ÔÓ¦µÄÆ½ÃæÇøÓòÇó³ö½»µã×ø±ê£¬¼´¿ÉÇóAµÄÃæ»ý£»
£¨2£©Éèm=x-y£¬n=x+y£¬×ª»¯Îª¹ØÓÚm£¬nµÄ²»µÈʽ×é¼´¿ÉÇóBµÄÃæ»ý£»
£¨3£©ÀûÓÃÖ±ÏߵĽؾ࣬¼´¿ÉÇóz=3x+yµÄ×îÖµ£»
£¨4£©¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽ¼´¿ÉÇóz=x2+£¨y+1£©2µÄ×îСֵ£»
£¨5£©¸ù¾ÝÁ½µã¼äµÄбÂʹØÏµ¼´¿ÉÇóz=$\frac{y+1}{x+1}$µÄÖµÓò£»
£¨6£©¸ù¾ÝÖ±ÏߵĽؾàºÍzµÄ¹ØÏµ¼´¿ÉÇóz=ax+y£¨a£¾1£©µÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©×÷³ö²»µÈʽ×é¶ÔÓ¦µÄÆ½ÃæÇøÓòÈçͼ£¬
ÓÉ$\left\{\begin{array}{l}{x-y+5}\\{x=3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=3}\\{y=8}\end{array}\right.$£¬¼´A£¨3£¬8£©£¬
ÓÉ$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=3}\\{y=-3}\end{array}\right.$£¬¼´C£¨3£¬-3£©£¬
ÓÉ$\left\{\begin{array}{l}{x-y+5=0}\\{x+y=0}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-\frac{5}{2}}\\{y=\frac{5}{2}}\end{array}\right.$£¬¼´B£¨-$\frac{5}{2}$£¬$\frac{5}{2}$£©£¬
Ôò|AC|=8-£¨-3£©=11£¬Bµ½Ö±Ïßx=3µÄ¾àÀëd=3-£¨-$\frac{5}{2}$£©=$\frac{11}{2}$£¬
ÔòAµÄÃæ»ýS=$\frac{1}{2}¡Á11¡Á\frac{11}{2}=\frac{121}{4}$£»
£¨2£©ÉèB={£¨x-y£¬x+y£©|£¨x£¬y£©¡ÊA}£¬ÇóBµÄÃæ»ý£»
Éèm=x-y£¬n=x+y£¬
Ôòx=$\frac{m+n}{2}$£¬y=$\frac{n-m}{2}$£¬
´ú»Ø²»µÈʽ×é$\left\{\begin{array}{l}{x-y+5¡Ý0}\\{x+y¡Ý0}\\{x¡Ü3}\end{array}\right.$µÃ$\left\{\begin{array}{l}{m+5¡Ý0}\\{n¡Ý0}\\{\frac{m+n}{2}¡Ü3}\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{m¡Ý-5}\\{n¡Ý0}\\{m+n¡Ü6}\end{array}\right.$£¬¶ÔÓ¦µÄÆ½ÃæÇøÓòΪ£º
ÆäÖÐG£¨6£¬0£©£¬F£¨-5£¬0£©£¬E£¨-5£¬11£©£¬
ÔòGF=6-£¨-5£©=11£¬EF=11£¬
ÔòÈý½ÇÐÎEFGµÄÃæ»ýS=$\frac{1}{2}¡Á11¡Á11$=$\frac{121}{2}$£®
£¨3£©ÓÉz=3x+y£¬µÃy=-3x+z£¬
Æ½ÒÆÖ±Ïßy=-3x+z£¨ºÚÏߣ©£¬ÓÉͼÏó¿ÉÖªµ±Ö±Ïßy=-3x+z£¬¾­¹ýµãAʱ£¬Ö±Ïßy=-3x+zµÄ½Ø¾à×î´ó£¬
´Ëʱz×î´óΪz=3¡Á3+8=9+8=17£¬
Æ½ÒÆÖ±Ïßy=-3x+z£¬ÓÉͼÏó¿ÉÖªµ±Ö±Ïßy=-3x+z£¬¾­¹ýµãBʱ£¬Ö±Ïßy=-3x+zµÄ½Ø¾à×îС£¬
´Ëʱz×îСΪz=3¡Á£¨-$\frac{5}{2}$£©+$\frac{5}{2}$=-5£®
£¨4£©z=x2+£¨y+1£©2µÄ¼¸ºÎÒâÒåÎªÇøÓòÄڵĵ㵽¶¨µãE£¨0£¬-1£©µÄ¾àÀ룬
ÓÉͼÏóÖªEµ½BCµÄ¾àÀë×îС£¬´Ëʱ¾àÀëd=$\frac{|1|}{\sqrt{2}}=\frac{1}{\sqrt{2}}$£¬
ÔòzµÄ×îСֵΪz=d2=$\frac{1}{2}$£»
£¨5£©z=$\frac{y+1}{x+1}$µÄ¼¸ºÎÒâÒåÎªÇøÓòÄڵĵ㵽µãF£¨-1£¬-1£©µÄбÂÊ£¨ºìÏߣ©£¬
BFµÄбÂÊk=$\frac{\frac{5}{2}+1}{-\frac{5}{2}+1}$=-2£¬CFµÄбÂÊk=$\frac{-3+1}{3+1}=-\frac{1}{2}$£¬
¹Êz$¡Ý-\frac{1}{2}$»òz¡Ü-2£¬
¼´zµÄÖµÓòΪ{z|z$¡Ý-\frac{1}{2}$»òz¡Ü-2}£»
£¨6£©ÓÉz=ax+y£¨a£¾1£©µÃy=-ax+z£¬ÔòбÂÊk=-a£¼-1£®
Æ½ÒÆÖ±Ïßy=-ax+z£¬ÓÉͼÏóÖªµ±Ö±Ïßy=-ax+z¾­¹ýµãAʱֱÏߵĽؾà×î´ó£¬´Ëʱz×î´óΪz=3a+11£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÏßÐԹ滮µÄÓ¦Óã¬Éæ¼°Ä¿±êº¯ÊýµÄ¼¸ºÎÒâÒ壬½áºÏÖ±ÏߵĽؾ࣬Á½µã¼äµÄбÂÊ£¬ÒÔ¼°¾àÀ빫ʽÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®×ÛºÏÐÔ½ÏÇ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Éè$\overrightarrow{a}$Óë$\overrightarrow{b}$ÊÇÁ½¸ö²»¹²ÏßÏòÁ¿£¬ÇÒÏòÁ¿$\overrightarrow{a}$+¦Ë$\overrightarrow{b}$Óë2$\overrightarrow{a}$-$\overrightarrow{b}$¹²Ïߣ¬Ôò¦Ë=-$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®È«¼¯U={x|x2+2x+3£¾0}£¬A={x|x2+x-12£¼0}£¬B={x||x|¡Ý2}£¬Çó£¨1£©A¡ÉB£¬£¨2£©∁UA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª¼¯ºÏA={x|x=4n+1£¬n¡ÊZ}£¬B={x|x=4n-3£¬n¡ÊZ}£¬C={x|x=8n+1£¬n¡ÊZ}£¬ÔòA£¬B£¬CÖ®¼äµÄ¹ØÏµÊÇ£¨¡¡¡¡£©
A£®C?B?AB£®A?B?CC£®C?A=BD£®A=B=C

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªf£¨x£©=$\sqrt{x+8-\frac{a}{x}}$ÔÚ£¨1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇóʵÊýaµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªg£¨x£©=m-$\frac{1}{{2}^{x}+1}$£¬f£¨x£©=g£¨x£©+5£®
£¨1£©mΪºÎֵʱ£¬g£¨x£©ÊÇÆæº¯Êý£»
£¨2£©ÌÖÂÛf£¨x£©µ¥µ÷ÐÔ£»
£¨3£©µ±g£¨x£©ÊÇÆæº¯Êý£¬Çóf£¨x£©£¾5µÄ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÅжÏÏÂÁк¯ÊýÆæÅ¼ÐÔ£®
£¨1£©f£¨x£©=lg$\frac{1-x}{1+x}$£»
£¨2£©f£¨x£©=$\frac{{2}^{x}-1}{{2}^{x}+1}$£»
£¨3£©f£¨x£©=$\left\{\begin{array}{l}{x+2\\;x£¼-1}\\{0\\;|x|¡Ü1}\\{-x+2\\;x£¾1}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èô¸´Êýcos¦È+isin¦ÈºÍsin¦È+icos¦ÈÏàµÈ£¬Ôò¦ÈµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{4}$B£®$\frac{¦Ð}{4}$»ò$\frac{5¦Ð}{4}$C£®2k¦Ð+$\frac{¦Ð}{4}$£¨k¡ÊZ£©D£®k¦Ð+$\frac{¦Ð}{4}$£¨k¡ÊZ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®º¯Êýf£¨x£©=$\frac{1}{2}$x3+sinx+2xµÄ¶¨ÒåÓòΪR£¬ÊýÁÐ{an}Êǹ«²îΪdµÄµÈ²îÊýÁУ¬ÇÒa1+a2+a3+a4+¡­a2013£¼0£¬¼Çm=f£¨a1£©+f£¨a2£©+f£¨a3£©+¡­f£¨a2013£©£¬¹ØÓÚʵÊým£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®mºãΪ¸ºÊý
B£®mºãΪÕýÊý
C£®µ±d£¾0ʱ£¬mºãΪÕýÊý£»µ±d£¼0ʱ£¬mºãΪ¸ºÊý
D£®µ±d£¾0ʱ£¬mºãΪ¸ºÊý£¬µ±d£¼0ʱ£¬mºãΪÕýÊý

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸