精英家教网 > 高中数学 > 题目详情
20.判断下列函数奇偶性.
(1)f(x)=lg$\frac{1-x}{1+x}$;
(2)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$;
(3)f(x)=$\left\{\begin{array}{l}{x+2\\;x<-1}\\{0\\;|x|≤1}\\{-x+2\\;x>1}\end{array}\right.$.

分析 根据函数奇偶性的定义进行判断即可.

解答 解:(1)由$\frac{1-x}{1+x}$>0得-1<x<1,
则f(-x)=lg$\frac{1+x}{1-x}$=lg($\frac{1-x}{1+x}$)-1=-lg$\frac{1-x}{1+x}$=-f(x),则函数f(x)为奇函数;
(2)函数的定义域为R,则f(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{1-{2}^{x}}{1+{2}^{x}}$=-$\frac{{2}^{x}-1}{{2}^{x}+1}$=-f(x),则函数为奇函数;
(3)若x>1,则-x<-1,则f(-x)=-x+2=f(x),
若x<-1,则-x>1,则f(-x)=x+2=f(x),
综上恒有f(-x)=f(x),则函数f(x)为偶函数.

点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知点A(-2,0),B(2,0),点C在直线y=1上,满足AC⊥BC,则以A,B为焦点且过点C的椭圆的方程为$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知正数a,b满足$\frac{3}{5a}+\frac{1}{5b}=1$,实数x,y满足$\left\{\begin{array}{l}{x-y≤2}\\{x+2y≥5}\\{y-2≤0}\end{array}\right.$,z=ax+by,则当3a+4b取最小值时,z的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.画出不等式组$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$表示的平面区域,设该平面区域为A,在此条件下解决下面问题:
(1)求A的面积;
(2)设B={(x-y,x+y)|(x,y)∈A},求B的面积;
(3)求z=3x+y的最值;
(4)求z=x2+(y+1)2的最小值;
(5)求z=$\frac{y+1}{x+1}$的值域;
(6)求z=ax+y(a>1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设集合A={x|(x-3)(x-a)=0,a∈R},B={x|(x-4)(x-1)=0},求A∪B,A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|-1<x<3},B={x|1<x≤5},C={x|x<0或x≥4}
(1)A∩(B∪C);
(2)C∩(A∪B)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求y=x3过点(-1,-1)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U={2,5,8},且∁UA={2},则集合A的真子集个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合M={x∈N|$\frac{6}{1+x}$∈Z},求M.

查看答案和解析>>

同步练习册答案