精英家教网 > 高中数学 > 题目详情
8.函数f(x)=ax3+bx2+cx+d在[-1,0]与[4,5]上的单调性相同,在[0,2]与[4,5]上的单调性相反.
(1)求c的值;
(2)当x为何值时,f(x)取得极值?并判断处这些极值点的横坐标与2、4的大小关系?
(3)f(x)的图象上是否存在点M(x0,y0),使f(x)在M处的切线斜率为3b?

分析 (1)根据f′(0)=0,从而求出c的值;(2)先求出函数的导数,求出函数的极值点,从而判断出结论;(3)先求出$\frac{b}{a}$的范围,假设存在,得到方程无解,从而判断结果.

解答 解:(1)由条件可知f(x)在区间[-1,0]和[0,2]上有相反的单调性,
∴x=0是f(x)的一个极值点,
∴f′(0)=0
而f′(x)=3ax2+2bx+c,
故c=0.
(2)由(1)得:f′(x)=3ax2+2bx,
令f′(x)=0,则3ax2+2bx=0,
解得:x1=0,x2=-$\frac{2b}{3a}$,
∴当x=0或x=-$\frac{2b}{3a}$时,函数f(x)取得极值,
显然0<2,
又f(x)在区间[0,2]和[4,5]上有相反的单调性,
∴2≤-$\frac{2b}{3a}$≤4;
(3)由(2)得:2≤-$\frac{2b}{3a}$≤4,
解得:-6≤$\frac{b}{a}$≤-3,
假设存在点M(x0,y0),使得f(x)在点M处的切线斜率为3b,
则f′(x0)=3b,即3${{a}_{0}}^{2}$+2bx0-3b=0,
∴△=4ab($\frac{b}{a}$+9),
∵-6≤$\frac{b}{a}$≤-3,
∴ab<0,$\frac{b}{a}$+9>0,
∴△<0,x0无解,
故不存在点M(x0,y0),使f(x)在M处的切线斜率为3b.

点评 本题考查了曲线的切线方程问题,函数的单调性、最值问题,考查导数的应用,函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{1}{2}$x3+sinx+2x的定义域为R,数列{an}是公差为d的等差数列,且a1+a2+a3+a4+…a2013<0,记m=f(a1)+f(a2)+f(a3)+…f(a2013),关于实数m,下列说法正确的是(  )
A.m恒为负数
B.m恒为正数
C.当d>0时,m恒为正数;当d<0时,m恒为负数
D.当d>0时,m恒为负数,当d<0时,m恒为正数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=x${\;}^{(-1)^{p}\frac{n}{m}}$(m,n,p∈N,且m,n互质)的图象关于原点对称,且不经过原点,则m,n,p应满足的条件是m是奇数、n是偶数或m、n都是奇数,且p为奇数(m,n,p∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线xsinα-y+1=0的倾角的取值范围[0,$\frac{π}{4}$]∪[$\frac{3π}{4},π$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,如果4sinA+2cosB=1,2sinB+4cosA=3$\sqrt{3}$,则∠C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设向量$\overrightarrow{a}$=(-1,2),如果向量$\overrightarrow{b}$=(m,1),如果$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行,那么$\overrightarrow{a}$与$\overrightarrow{b}$的数量积等于$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若随机变量X服从正态分布,其正态曲线上的最高点的坐标是(10,$\frac{1}{2}$),则该随机变量的方差等于(  )
A.10B.100C.$\frac{2}{π}$D.$\sqrt{\frac{2}{π}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数f(x)=$\frac{{x}^{2}+a}{x+1}$的导函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求值域:
(1)y=loga(2-ax-a2x
(2)y=loga(a-ax).

查看答案和解析>>

同步练习册答案